Nonautonomous fractional problems with exponential growth

  • João Marcos do Ó
  • Olímpio H. Miyagaki
  • Marco SquassinaEmail author


We study a class of nonlinear nonautonomous nonlocal equations with subcritical and critical exponential nonlinearity. The involved potential can vanish at infinity.


Trudinger-Moser inequality Schrödinger equations Vanishing potentials 

Mathematics Subject Classification

35P15 35P30 35R11 


  1. 1.
    Adams D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)zbMATHCrossRefGoogle Scholar
  2. 2.
    Adimurthi A.: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann. Sci. Norm. Super. Pisa Cl. Sci. 17, 393–413 (1990)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Adimurthi, A., Yadava, S.L.: Multiplicity results for semilinear elliptic equations in a bounded domain of \({\mathbb{R}^2}\) involving critical exponent. Ann. Sci. Norm. Super. Pisa Cl. Sci., pp. 481–504 (1990)Google Scholar
  4. 4.
    Alves C.O., Souto M.A.S.: Existence of solutions for a class of elliptic equations in \({\mathbb{R}^N}\) with vanishing potentials. J. Differ. Equ. 252, 5555–5568 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brandle C., Colorado E., Pablo A., Sánchez U.: A concave-convex elliptic problem involving the fractional laplacian. Proc. R. Soc. Edinb. A 143, 39–71 (2013)CrossRefGoogle Scholar
  6. 6.
    Cabré X., Tan J.G.: Positive solutions of nonlinear problems involving the square root of the laplacian. Adv. Math. 224, 2052–2093 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Caffarelli L., Silvestre L.: An extension problems related to the fractional laplacian. Commun. PDE 32, 1245–1260 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Carleson L., Chang A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)zbMATHMathSciNetGoogle Scholar
  9. 9.
    do Ó, J.M., Miyagaki, O.H., Squassina, M.: Critical and subcritical fractional problems with vanishing potentials. preprintGoogle Scholar
  10. 10.
    Figueiredo D.G., do Ó J.M., Ruf B.: Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discret. Contin. Dyn. Syst. 30, 455–476 (2011)zbMATHCrossRefGoogle Scholar
  11. 11.
    Figueiredo D.G., Miyagaki O.H., Ruf B.: Elliptic equations in \({\mathbb{R}^2}\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equs. 3, 139–153 (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Figueiredo D.G., do Ó J.M., Ruf B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55, 135–152 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Frank R., Lenzmann E.: Uniqueness of non-linear ground states for fractional laplacians in \({\mathbb{R}}\) . Acta Math. 210, 261–318 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Iannizzotto A., Squassina M.: 1/2-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414, 372–385 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ozawa T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Trudinger N.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • João Marcos do Ó
    • 1
  • Olímpio H. Miyagaki
    • 2
  • Marco Squassina
    • 3
    Email author
  1. 1.Department of MathematicsFederal University of ParaíbaJoão PessoaBrazil
  2. 2.Department of MathematicsFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly

Personalised recommendations