Advertisement

On invariant tori of vector field under weaker non-degeneracy condition

  • Dongfeng ZhangEmail author
  • Junxiang Xu
Article

Abstract

In this paper we prove the persistence of invariant tori for analytic perturbation of constant vector field under weaker non-degeneracy condition. In the proof we introduce a parameter q and make the steps of KAM iteration infinitely small in the speed of function \({q^{n} \epsilon}\), \({0 < q < 1}\), rather than super exponential function.

Keywords

Invariant tori Non-degeneracy condition Small divisors KAM iteration 

Mathematics Subject Classification

37J40 70H08 70K43 

References

  1. 1.
    Pöschel J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 707–732 (2001)CrossRefGoogle Scholar
  2. 2.
    Pöschel J.: KAM \({\grave{a}}\) la R. Regul. Chaotic Dyn. 16, 17–23 (2011)zbMATHCrossRefGoogle Scholar
  3. 3.
    Rüssmann H.: KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete Contin. Dyn. Syst. Ser. S 3, 683–718 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Xu J., You J., Qiu Q.: Invariant tori of nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–386 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Xu J., You J.: Gevrey smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann’s non-degeneracy condition. J. Differ. Equ. 235, 609–622 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang D., Xu J.: On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann’s non-degeneracy condition. Discrete Contin. Dyn. Syst. Ser. A 16, 635–655 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Zhang D., Xu J.: Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Rüssmann’s non-degeneracy condition. J. Math. Anal. Appl 322, 293–312 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations