Advertisement

Existence of heteroclinic solution for a class of non-autonomous second-order equation

  • Claudianor O. Alves
Article

Abstract

In this paper, we use variational methods to prove the existence of heteroclinic solutions for a class of non-autonomous second-order equation.

Keywords

Heteroclinic solutions Minimization Second-order equation 

Mathematics Subject Classification

34C37 37J45 46E35 

References

  1. 1.
    Alessio F., Montecchiari P.: Entire solutions in \({\mathbb{R}^{2}}\) for a class of Allen–Cahn equations. ESAIM: COCV 11, 633–672 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Brézis H.: Analyse Fonctionelle. Masson, Paris (1983)Google Scholar
  3. 3.
    Bonheure, D., Sanchez, L.: Heteroclinic orbits for some classes of second and fourth order differential equation. In: Canãda, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations, Chapter 2. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Bonheure D., Obersnel F., Omari P.: Heteroclinic solutions of the prescribed curvature equation with a double-well potential. Differ. Integr. Equ. 26, 1411–1428 (2013)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bonheure D., Sanchez L., Tarallo M., Terracini S.: Heteroclinc connections between nonconsecutive equilibria of a fourth order differential equation. Calc. Var. Partial Differ. Equ. 17, 341–356 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coti Zelati V., Rabinowitz P.H.: Heteroclinc solutions between stationay poinmts at different energy levels. Topol. Methods Nonlinear Anal. 17, 1–21 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gavioli A.: On the existence of heteroclinic trajectories for asymptotically autonomous equations. Topol. Method Nonlinear Anal. 34, 251–266 (2009)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Gavioli A.: Monotone heteroclinic solutions to non-autonomous equations via phase plane analysis. Nonlinear Differ. Equ. Appl. 18, 79–100 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gavioli A., Sanchez L.: Heteroclinic for non-autonomous second order differential equations. Differ. Integr. Equ. 22, 999–1018 (2009)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Korman P., Lazer A.C., Li Y.: On homoclinic and heteroclinic orbits for Hamiltonian systems. Differ. Integr. Equ. 10, 357–368 (1997)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Spradlin G.S.: Heteroclinic solutions to an asymptotically autonomous second-order equation. EJDE 137, 1–14 (2010)Google Scholar
  13. 13.
    Rabinowitz P.H.: A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic EDP. Discret. Contin. Dyn. Syst. 10, 507–515 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270–291 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rabinowitz P.H.: Homoclinic and heteroclinic orbits for a class of Hamiltonian systems. Calc. Var. Partial Differ. Equ. 1, 1–36 (1993)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Universidade Federal de Campina GrandeUnidade Acadêmica de MatemáticaCampina GrandeBrazil

Personalised recommendations