The Benjamin–Bona–Mahony equation with dissipative memory

  • Filippo Dell’OroEmail author
  • Youcef Mammeri
  • Vittorino Pata


We show that the nonlinear contraction semigroup generated by the Benjamin–Bona–Mahony equation with dissipative memory
$$u_{t} - u_{txx} + u_{x} - \int_{0}^{\infty} g(s) u_{xx}(t-s)\, {\rm d}s + u^{p} u_{x} = 0$$
is exponentially stable for every \({p\in\mathbb{N}}\).


Benjamin–Bona–Mahony equation Nonlinear contraction semigroup Dissipative memory Exponential stability 

Mathematics Subject Classification

35B35 35B40 35F25 45K05 


  1. 1.
    Albert J.: Dispersion of low-energy waves for the generalized Benjamin–Bona–Mahony equation. J. Differ. Equ. 63, 117–134 (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Albert J.: On the decay of solutions of the generalized Benjamin–Bona–Mahony equation. J. Math. Anal. Appl. 141, 529–537 (1989)CrossRefGoogle Scholar
  3. 3.
    Amick C.J., Bona J.L., Schonbek M.E.: Decay of solutions of some nonlinear wave equations. J. Differ. Equ. 81, 1–49 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benjamin T., Bona J., Mahony J.: Models equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A. 272, 47–78 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bona J.L., Dougalis V.A.: An initial and boundary-value problem for a model equation for propagation of long waves. J. Math. Anal. Appl. 75, 503–522 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Byatt-Smith J.G.B.: The effect of laminar viscosity on the solution of the undular bore. J. Fluid Mech. 48, 33–40 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chehab, J.P., Garnier, P., Mammeri, Y.: Long-time behavior of solutions of a BBM equation with generalized damping. arXiv:1402.5009v1(2014) (24 pages)
  8. 8.
    Chepyzhov V.V., Pata V.: Some remarks on stability of semigroups arising from linear viscoelasticity. Asymptot. Anal. 46, 251–273 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dafermos C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297–308 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dutykh D.: Visco-potential free-surface flows and long wave modelling. Eur. J. Mech. B Fluids 28, 430–443 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gatti S., Miranville A., Pata V., Zelik S.: Attractors for semilinear equations of viscoelasticity with very low dissipation. Rocky Mt. J. Math. 38, 1117–1138 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghidaglia J.M.: Finite-dimensional behavior for weakly damped driven Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 365–405 (1988)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Giorgi C., Naso M.G., Pata V.: Exponential stability in linear heat conduction with memory: a semigroup approach. Commun. Appl. Anal. 5, 121–133 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grasselli M., Pata V.: A reaction–diffusion equation with memory. Discrete Contin. Dyn. Syst. 15, 1079–1088 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo C., Fang S.: Optimal decay rates of solutions for a multidimensional generalized Benjamin–Bona–Mahony equation. Nonlinear Anal. 75, 3385–3392 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gurtin M.E., Pipkin A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31, 113–126 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hayashi N., Kaikina E.I., Naumkin P.I.: Large time asymptotics for the BBM-Burgers equation. Ann. Henri Poincaré 8, 485–511 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kakutani T., Matsuuchi K.: Effect of viscosity on long gravity waves. J. Phys. Soc. Jpn. 39, 237–246 (1975)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Korteweg D.J., de Vries G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves. Philos. Mag. 39, 422–443 (1895)CrossRefzbMATHGoogle Scholar
  20. 20.
    Larkin N.A., Vishnevskii M.P.: Decay of the energy for the Benjamin–Bona–Mahony equation posed on bounded intervals and on a half-line. Math. Methods Appl. Sci. 35, 693–703 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mammeri Y.: Comparaison entre modèles d’ondes de surface en dimension 2. M2AN Math. Model. Numer. Anal. 41 , 513–542 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Miranville A., Temam R.: Mathematical Modelling in Continuum Mechanics. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  23. 23.
    Pata V.: Exponential stability in linear viscoelasticity. Q. Appl. Math. 64, 499–513 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pata V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77, 333–360 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pata V.: Exponential stability in linear viscoelasticity with almost flat memory kernels. Commun. Pure Appl. Anal. 9, 721–730 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Peter J.G., Gurtin M.E.: On the theory of heat condition involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)CrossRefzbMATHGoogle Scholar
  27. 27.
    Stanislavova M.: On the global attractor for the damped Benjamin–Bona–Mahony equation. Discrete Contin. Dyn. Syst. suppl, 824–832 (2005)MathSciNetGoogle Scholar
  28. 28.
    Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang B.: Strong attractors for the Benjamin–Bona–Mahony equation. Appl. Math. Lett. 10, 23–28 (1997)CrossRefzbMATHGoogle Scholar
  30. 30.
    Wang M.: Long time dynamics for a damped Benjamin–Bona–Mahony equation in low regularity spaces. Nonlinear Anal. 105, 134–144 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang B., Yang W.: Finite-dimensional behaviour for the Benjamin–Bona–Mahony equation. J. Phys. A Math. Gen. 30, 4877–4885 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Filippo Dell’Oro
    • 1
    Email author
  • Youcef Mammeri
    • 2
  • Vittorino Pata
    • 3
  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPrague 1Czech Republic
  2. 2.Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352Université de Picardie Jules VerneAmiensFrance
  3. 3.Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoMilanItaly

Personalised recommendations