Advertisement

The Dirichlet problem for prescribed principal curvature equations

  • Marco CirantEmail author
Article
  • 152 Downloads

Abstract

In this paper the Dirichlet problem for the equation which prescribes the ith principal curvature of the graph of a function u is considered. A Comparison principle is obtained within the class of semiconvex subsolutions by a local perturbation procedure combined with a fine Lipschitz estimate on the elliptic operator. Existence of solutions is stated for the Dirichlet problem with boundary conditions in the viscosity sense; further assumptions guarantee that no loss of boundary data occurs. Some conditions relating the geometry of the domain and the prescribing data which are sufficient for existence and uniqueness of solutions are presented.

Mathematics Subject Classification

35J25 35J60 35J70 53C42 

Keywords

Prescribed curvature equations Principal curvature Degenerate elliptic Dirichlet Problem 

References

  1. 1.
    Bardi M., Mannucci P.: On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Commun. Pure Appl. Anal. 5(4), 709–731 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bardi M., Mannucci P.: Comparison principles for subelliptic equations of Monge-Ampère type. Boll. Unione Mat. Ital. 9, 1(2), 489–495 (2008)MathSciNetGoogle Scholar
  3. 3.
    Barles G., Busca J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Equ. 26(11–12), 2323–2337 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barron E.N., Goebel R., Jensen R.R.: Quasiconvex functions and nonlinear PDEs. Trans. Am. Math. Soc. 365(8), 4229–4255 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Caffarelli L., Nirenberg L., Spruck J.: The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation. Commun. Pure Appl. Math. 37(3), 369–402 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Caffarelli, L., Nirenberg, L., Spruck, J.: Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces. In: Current Topics in Partial Differential Equations, pp. 1–26. Kinokuniya, Tokyo (1986)Google Scholar
  7. 7.
    Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, p. 58. Birkhäuser Boston Inc., Boston (2004)Google Scholar
  8. 8.
    Crandall M.G., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lio F.D.: Comparison results for quasilinear equations in annular domains and applications. Commun. Partial Differ. Equ. 27(1–2), 283–323 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gilbarg, D., Trudinger. N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, 3rd edn. Springer-Verlag, Berlin (2001)Google Scholar
  11. 11.
    Guan P., Trudinger N.S., Wang X.-J.: On the Dirichlet problem for degenerate Monge-Ampère equations. Acta Math. 182(1), 87–104 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Harvey F.R., Lawson H.B. Jr.: Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds. J. Differ. Geom. 88(3), 395–482 (2011)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge 1990. Corrected reprint of the 1985 originalGoogle Scholar
  14. 14.
    Ishii H., Lions P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83(1), 26–78 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ivochkina N., Filimonenkova N.: On the backgrounds of the theory of m-Hessian equations. Commun. Pure Appl. Anal. 12(4), 1687–1703 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ivochkina N.M.: Solution of the Dirichlet problem for an equation of curvature of order m. Dokl. Akad. Nauk SSSR 299(1), 35–38 (1988)MathSciNetGoogle Scholar
  17. 17.
    Luo Y.: On the uniqueness of solutions of spectral equations. J. Global Optim. 40(1–3), 155–160 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Luo Y., Eberhard A.: An application of C 1,1 approximation to comparison principles for viscosity solutions of curvature equations. Nonlinear Anal. 64(6), 1236–1254 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Mannucci P.: The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Commun. Pure Appl. Anal. 13(1), 119–133 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Trudinger N.S.: The Dirichlet problem for the prescribed curvature equations. Arch. Rational Mech. Anal. 111(2), 153–179 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Trudinger N.S., Urbas J.I.E.: The Dirichlet problem for the equation of prescribed Gauss curvature. Bull. Austral. Math. Soc. 28(2), 217–231 (1983)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PadovaPadovaItaly

Personalised recommendations