Linear and nonlinear eigenvalue problems for Dirac systems in unbounded domains

  • Anna Capietto
  • Walter DambrosioEmail author
  • Duccio Papini


We first study the linear eigenvalue problem for a planar Dirac system in the open half-line and describe the nodal properties of its solutions by means of the rotation number. We then give a global bifurcation result for a planar nonlinear Dirac system in the open half-line. As an application, we provide a global continuum of solutions of the nonlinear Dirac equation which have a special form.

Mathematics Subject Classification (2000)

34C23 34B09 34L40 


Dirac system Eigenvalue problem Rotation number Global bifurcation 


  1. 1.
    Balabane M., Cazenave T., Douady A., Merle F.: Existence of excited states for a nonlinear Dirac field. Commun. Math. Phys. 119, 153–176 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Balabane M., Cazenave T., Vazquez L.: Existence of standing waves for Dirac fields with singular nonlinearities. Commun. Math. Phys. 133, 53–74 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cacciafesta F.: Global small solutions to the critical radial Dirac equation with potential. Nonlinear Anal. 74, 6060–6073 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Capietto A., Dambrosio W.: Planar Dirac-type systems: the eigenvalue problem and a global bifurcation result. J. Lond. Math. Soc. 81, 477–498 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Capietto A., Dambrosio W., Papini D.: A global bifurcation result for a second order singular equation. Rend. Istit. Mat. Univ. Trieste. Special Issue in honour of Prof. F. Zanolin. 44, 173–185 (2012)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Coppel, W.A.: Dichotomies in stability theory. Lectures Notes in Mathematics, vol. 629 (1978)Google Scholar
  7. 7.
    Dancer N.: Boundary-value problems for ordinary differential equations on infinite intervals. Proc. Lond. Math. Soc. 30, 76–94 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dancer N.: Boundary-value problems for ordinary differential equations of infinite intervals. II. Q. J. Math. Oxford Ser. 28, 101–115 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ding J., Xu J., Zhang F.: Solutions of super-linear Dirac equations with general potentials. Differ. Equ. Dyn. Syst. 17, 235–256 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ding Y., Ruf B.: Solutions of a nonlinear Dirac equation with external fields. Arch. Rational Mech. Anal. 190, 57–82 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dong Y., Xie J.: Admissible solutions for Dirac equations with singular and non-monotone nonlinearity. Proc. Edinb. Math. Soc. 54, 363–371 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dunford, N., Schwartz, J.: Linear Operators—Part II: spectral theory. Interscience Publishers, New York (1963)Google Scholar
  13. 13.
    Eastham, M.S.P.: The asymptotic solution of linear differential systems. London Math. Society Monographs New Series (1989)Google Scholar
  14. 14.
    Esteban M.J.: An overview on linear and nonlinear Dirac equations. Discrete Contin. Dyn. Syst. 8, 381–397 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kalf H., Schmidt K.M.: Spectral stability of the Coulomb-Dirac Hamiltonian with anomalous magnetic moment. J. Differ. Equ. 205, 408–423 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Rabier P.J., Stuart C.: Global bifurcation for quasilinear elliptic equations on \({\mathbb{R}^{N}}\) . Math. Z. 237, 85–124 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rañada, A.F.: On nonlinear classical Dirac fields and quantum physics. In: Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, pp. 363–376. Plenum, New York (1983)Google Scholar
  18. 18.
    Schmid H., Tretter C.: Singular Dirac systems ans Sturm-Liouville problems nonlinear in the spectral parameter. J. Differ. Equ. 181, 511–542 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Schmid H., Tretter C.: Eigenvalue accumulation for Dirac operators with spherically symmetric potential. J. Phys. A. 37, 8657–8674 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Secchi S., Stuart C.: Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete Contin. Dyn. Syst. 9, 1493–1518 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Soler M.: Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy. Phys. Rev. D. 1, 2766–2769 (1970)CrossRefGoogle Scholar
  22. 22.
    Stuart C.: Global properties of components of solutions of non-linear second order differential equations on the half-line. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(2), 265–286 (1975)MathSciNetGoogle Scholar
  23. 23.
    Thaller, B.: The Dirac Equation. Text and Monographs in Physics (1992)Google Scholar
  24. 24.
    Weidmann, J.: Spectral theory of ordinary differential equations. Lectures Notes in Mathematics, vol. 1258 (1987)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Anna Capietto
    • 1
  • Walter Dambrosio
    • 1
    Email author
  • Duccio Papini
    • 2
  1. 1.Dipartimento di MatematicaUniversità di TorinoTurinItaly
  2. 2.Dipartimento di Ingegneria dell’Informazione e Scienze MatematicheUniversità di SienaSienaItaly

Personalised recommendations