Advertisement

Classical solvability of multidimensional two-phase Stefan problem for degenerate parabolic equations and Schauder’s estimates for a degenerate parabolic problem with dynamic boundary conditions

  • S. P. DegtyarevEmail author
Article

Abstract

We consider multidimensional two-phase Stefan problem for degenerate parabolic equations of the porous medium type in classes of smooth functions. First we find a natural Hölder class for the Dirichlet boundary conditions in the initial boundary boundary problem for a degenerate parabolic equation of second order. This class then is used to obtain the Schauder estimates for a degenerate parabolic equation with dynamic boundary conditions. As a result we prove the existence locally in time of a smooth solution for Stefan problem for degenerate parabolic equations.

Mathematics Subject Classification (2010)

Primary 35R35 Secondary 35K65 35R37 35K60 

Keywords

Free boundary Stefan problem Classical solvability Porous medium equation Degenerate parabolic equations Dynamic boundary conditions Schauder estimates 

References

  1. 1.
    Meirmanov A.M.: On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Math. USSR Sb. 40(2), 157–178 (1981)CrossRefGoogle Scholar
  2. 2.
    Hanzawa E.-I.: Classical solutions of the Stefan problem. Tohoku Math. J. 33, 297–335 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bazalii B.V., Degtyarev S.P.: On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid. Math. USSR Sb. 60(1), 1–17 (1988)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Radkevich E.V.: On conditions for the existence of a classical solution of the Stefan contact problem Math. USSR Sb. 69(2), 497–525 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Borodin M.A.: Existence of the global classical solution for a two-phase Stefan problem. SIAM J. Math. Anal. 30(6), 1264–1281 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bizhanova G.I., Solonnikov V.A.: On problems with free boundaries for second-order parabolic equations. St. Petersburg Math. J. 12(6), 949–981 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kusaka Y., Tani A.: On the classical solvability of the stefan problem in a viscous incompressible fluid flow. SIAM J. Math. Anal. 30(3), 584–602 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Yi F., Liu Y.: Two-phase stefan problem as the limit case of two-phase Stefan problem with kinetic condition. J. Differ. Equ. 183(1), 189–207 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Daskalopoulos P., Lee K.-A.: All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow. Commun. Partial Differ. Equ. 29(1–2), 71–89 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Friedman A., Hu B., Velazquez J.J.L.: A Stefan problem for a protocell model with symmetry-breaking bifurcations of analitic solutions. Interfaces Free Bound 3(2), 143–199 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Friedman A., Velazquez J.J.L.: A free boundary problem associated with crystallization of polymers in a temperature field. Indiana Univ. Math. J. 50(4), 1609–1649 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Prüss J., Simonett G., Zacher R.: Qualitative behavior of solutions for thermodinamically consistent Strfan problems. Arch. Ration. Mech. Anal. 207(2), 511–667 (2013)CrossRefGoogle Scholar
  13. 13.
    Kusaka Y.: Global-in-time strong solvability of the multi-dimensional one-phase Stefan problem for an incompressible viscous fluid. Jpn. J. Ind. Appl. Math. 30(2), 415–439 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Visintin, A.: The Stefan problem for a class of degenerate parabolic equations. Free boundary problems: theory and applications, II. Research Notes in Mathematics, vol. 79, pp. 419–430. Pitman Advanced Publishing Program, Boston (1983)Google Scholar
  15. 15.
    Bertsch M., De Mottoni P., Peletier L.A.: Degenerate diffusion and the Stefan problem. Nonlinear Anal. TMA 8, 1311–1336 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Cannon J.R., Hong-Ming Y.: On the existence of the weak solution and the regularity of the free boundary to a one-dimensional two-phase degenerate Stefan problem. J. Differ.Equ. 73(1), 104–118 (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Xiangshen X., Shillor M.: The Stefan problem with convection and Joule’s heating. Adv. Differ. Equ. 2(4), 667–691 (1997)Google Scholar
  18. 18.
    Urbano, J.M.: On the Stefan problem with convection and nonlinear diffusion in a porous medium. Nonlinear Evolution Equations and Their Applications, pp. 225–236. World Scientific, Singapore (1999)Google Scholar
  19. 19.
    Guangwei Y.: Local existence of bounded solutions to the degenerate Stefan problem with Joule’s heating. J. Partial Differ. Equ. 9(1), 42–54 (1996)zbMATHGoogle Scholar
  20. 20.
    Di Benedetto E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)CrossRefGoogle Scholar
  21. 21.
    Bazaliy B.V., Danilyuk I.I., Degtyarev S.P.: Classical solvability of some free boundary problems for parabolic equations with degeneration. Free boundary problems involving solid. Longman Sci. Tech. Pitman. Res. Notes Math. Ser. 281, 88–91 (1993)MathSciNetGoogle Scholar
  22. 22.
    Bazalii, B.V., Degtyarev, S.P.: Degenerate parabolic equations and problems with a free boundary. (Russian) Dokl. Akad. Nauk Ukrain. SSR Ser. A 1, 3–7 (1990)Google Scholar
  23. 23.
    Xiangsheng X.: Existence and regularity theorems for a two-phase degenerate Stefan problem with convection. Appl. Anal. 51(1–4), 221–250 (1993)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Huilai L.: A degenerate Stefan problem with two free boundaries. Northeast. Math. J. 11(3), 263–274 (1995)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Dening L.: Regularity of solutions for a two-phase degenerate Stefan problem. J. Differ.Equ. 102(2), 402–418 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Dancer E.N., Hilhorst D., Mimura M., Peletier L.A.: Spatial segregation limit of a competition-diffusion system. Eur. J. Appl. Math. 10(2), 97–115 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Weller F.F.: A free boundary problem modeling thrombus growth. Model development and numerical simulation using the level set method. J. Math. Biol. 61(6), 805–818 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Weller F.F., Neuss-Radu M., Jger W.: Analysis of a free boundary problem modeling thrombus growth. SIAM J. Math. Anal. 45(2), 809–833 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Zhao J., Wang M.: A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment. Nonlinear Anal. Real World Appl. 16, 250–263 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Athreya S.R., Barlow M.T., Bass R.F., Perkins E.A.: Degenerate stochastic differential equations and super-Markov chains. Probab. Theory Related Fields 123(4), 484–520 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Epstein, C.L., Mazzeo, R.: Degenerate Diffusion Operators Arising in Population Biology. Princeton Uni-versity Press, Princeton, arXiv:1110.0032 (2013)
  32. 32.
    van Moerbeke P.: An optimal stopping problem with linear reward. Acta Math. 132, 111–151 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Bensoussan A., Friedman A.: Nonzero-sum stochastic differential games with stopping times and free boundary problems. Trans. Am. Math. Soc. 231(2), 275–327 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Denk R., Prüss J., Zacher R.: Maximal L p: regularity of parabolic problems with boundary dynamics of relaxation type. J. Funct. Anal. 255(11), 3149–3187 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Escher J.: Quasilinear parabolic systems with dynamical boundary conditions. Comm. Partial Differ. Equ. 18(7–8), 1309–1364 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Prüss J., Racke R., Zheng S.: Maximal regularity and a symptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Ana. Mate. 185(4), 627–648 (2006)zbMATHGoogle Scholar
  37. 37.
    Goldstein G.R., Miranville A.: A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete Contin. Dyn. Syst. Ser. S 6(2), 387–400 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Vázquez J.L., Vitillaro E.: On the Laplace equation with dynamical boundary conditions of reactive-diffusive type. J. Math. Anal. Appl. 354(2), 674–688 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Vázquez J.L., Vitillaro E.: Heat equation with dynamical boundary conditions of reactive type. Commun. Partial Differ. Equ. 33(4–6), 561–612 (2008)CrossRefzbMATHGoogle Scholar
  40. 40.
    Frolova E.: Solvability in Sobolev spaces of a problem for a second order parabolic equation with time derivative in the boundary condition. Portugal Math. 56(4), 419–441 (1999)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Rodrigues J.F., Solonnikov V.A.: On a parabolic system with time derivative in the boundary conditions and related free boundary problems. Math. Ann. 315(1), 61–95 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Kim S., Lee K.-A.: Smooth solution for the porous medium equation in a bounded domain. J. Differ. Equ. 247(4), 1064–1095 (2009)CrossRefzbMATHGoogle Scholar
  43. 43.
    Ladyzhenskaja, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, vol. 23, xi+648. American Mathematical Society, Providence (1968)Google Scholar
  44. 44.
    Daskalopoulos P., Hamilton R.: Regularity of the free boundary for the porous medium equation. J. Am. Math. Soc. 11(4), 899–965 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Solonnikov V.A.: Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations (in Russian). Trudy Mat. Inst. Steklov (Proc. Steklov Inst. Math.) 70, 213–317 (1964)zbMATHMathSciNetGoogle Scholar
  46. 46.
    Solonnikov V.A.: Solvability of a problem on the motion of a viscous incompressible fluid bounded by a free surface. Math. USSR Izv. 11(6), 1323–1358 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Bazaliy B.V., Friedman A.: A free boundary problem for an elliptic-parabolic system: application to a model of tumor growth. Commun. Partial Differ. Equ. 28(3–4), 517–560 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Bazaliy B.V., Friedman A.: The Hele-Shaw problem with surface tension in a half-plane. J. Differ. Equ. 216(2), 439–469 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Bazaliy B.V., Degtyarev S.P.: Classical solutions of many-dimensional elliptic-parabolic free boundary problems. Nonlinear Differ. Equ. Appl. 16(4), 421–443 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Lunardi, A.: Analitic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, vol. 16. Birkhäuser (1995)Google Scholar
  51. 51.
    Lange, S.: Real and Functional Analysis. Graduate Texts in Mathematics, vol. 142, pp. xiv+580. Springer-Verlag, New York (1993)Google Scholar
  52. 52.
    Bizhanova G.I.: Investigation of solvability of the multidimensional two-phase Stefan and the nonstationary filtration Florin problems for second order parabolic equations in weighted Hölder spaces of functions. J. Math. Sci. 84(1), 823–844 (1997)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Brandt, A.: Interior Schauder estimates for parabolic differential: (or difference-) equations via the maximum principle. Isr. J. Math. 7, 254–262 (1969)Google Scholar
  54. 54.
    Golovkin K.K.: On equivalent normalizations of fractional spaces (Russian). Trudy Mat. Inst. Steklov (Proc. Steklov Inst. Math.) 66, 364–383 (1962)zbMATHMathSciNetGoogle Scholar
  55. 55.
    Bazalii B.V., Degtyarev S.P.: A boundary-value problem in weighted Hölder spaces for elliptic equations which degenerate at the boundary of the domain. Sbornik Math. 204(7), 958–978 (2013)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and Quasilinear Equations of Elliptic Type. Second edn. “Nauka”, Moscow, p. 576 (1973)Google Scholar
  57. 57.
    Solonnikov V.A.: General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. II. (Russian). Trudy Mat. Inst. Steklov (Proc. Steklov Inst. Math.) 92, 233–297 (1966)MathSciNetGoogle Scholar
  58. 58.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, pp. xiv+290. Princeton University Press, Princeton (1970)Google Scholar
  59. 59.
    Friedman, A.: Partial Differential Equations of Parabolic Type, pp. xiv+347. Prentice-Hall Inc., Englewood Cliffs (1964)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and Mechanics NASUDonetskUkraine

Personalised recommendations