A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows

  • Yuanzhen ShaoEmail author


It is the purpose of this article to establish a technical tool to study regularity of solutions to parabolic equations on manifolds. As applications of this technique, we prove that solutions to the Ricci-DeTurck flow, the surface diffusion flow and the mean curvature flow enjoy joint analyticity in time and space, and solutions to the Ricci flow admit temporal analyticity.

Mathematics Subject Classification (2000)

54C35 58J99 35K55 53C44 35B65 


Function spaces on Riemannian manifolds Regularity of solutions to parabolic equations Real analytic solutions Geometric evolution equations The Ricci flow The surface diffusion flow The mean curvature flow Maximal regularity The implicit function theorem 


  1. 1.
    Amann, H.: Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen. de Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1990)Google Scholar
  2. 2.
    Amann, H.: Linear and Quasilinear Parabolic Problems: Volume I, Birkhäuser Boston, Inc., Boston (1995)Google Scholar
  3. 3.
    Amann H: Elliptic operators with infinite-dimensional state spaces. J. Evol. Equ. 1(2), 143–188 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Amann H: Function spaces on singular manifolds. Math. Nachr. 286(5–6), 436–475 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Amann, H.: Anisotropic function spaces on singular manifolds, arXiv.1204.0606.
  6. 6.
    Amann, H.: Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems, Preprint (2013)Google Scholar
  7. 7.
    Angenent S.B.: Nonlinear analytic semiflows. Proc. Roy. Soc. Edinburgh Sect. A 115(1–2), 91–107 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Angenent S.B.: Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature. Ann. of Math. (2) 132(3), 451–483 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bando S.: Real analyticity of solutions of Hamilton’s equation. Math. Z. 195(1), 93–97 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bergh, J., Löfström, J.: Interpolation Space: An Introduction, Springer, Berlin-New York (1976)Google Scholar
  11. 11.
    Brakke, K.: The motion of a surface by its mean curvature, Volume 20 of Mathematical Notes. Princeton University Press, Princeton (1978)Google Scholar
  12. 12.
    Browder, F.E.: Analyticity and partial differential equations I. Am. J. Math. 84:666–710 (1962)Google Scholar
  13. 13.
    Cai Q., Zhao P.: On stability of Ricci flows based on bounded curvatures. Balkan J. Geom. Appl. 15(2), 34–46 (2010)MathSciNetGoogle Scholar
  14. 14.
    Chow, B., Knopf, D.: The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence (2004)Google Scholar
  15. 15.
    Clément P., Simonett G.: Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations. J. Evol. Equ. 1(1), 39–67 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    DeTurck D.: Deforming metrics in the direction of their Ricci tensors. J. Differential Geom. 18(1), 157–162 (1983)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Escher J., Mayer U., Simonett G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29(6), 1419–1433 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Escher J., Mucha P.: The surface diffusion flow on rough phase spaces. Discrete Contin. Dyn. Syst. 26(2), 431–453 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Escher J., Prokert G.: Analyticity of solutions to nonlinear parabolic equations on manifolds and an application to Stokes flow. J. Math. Fluid Mech. 8(1), 1–35 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Escher, J., Prüss, J., Simonett, G.: A new approach to the regularity of solutions for parabolic equations, evolution equations. In: Lecture Notes in Pure and Appl. Math. vol. 234, pp. 167–190. Dekker, New York (2003)Google Scholar
  21. 21.
    Escher J., Prüss J., Simonett G.: Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Escher J., Simonett G.: Analyticity of the interface in a free boundary problem. Math. Ann. 305(3), 439–459 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Escher J., Simonett G.: The volume preserving mean curvature flow near spheres. Proc. Am. Math. Soc. 126(9), 2789–2796 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Escher J., Simonett G.: A center manifold analysis for the Mullins-Sekerka Model. J. Differ. Equ. 143(2), 267–292 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Gage, M.: On an area-preserving evolution equation for plane curves. In: Nonlinear problems in geometry (Mobile, Ala., 1985), vol. 51, pp. 51–62. Contemp. Math. Am. Math. Soc., Providence (1986)Google Scholar
  26. 26.
    Greene, R.E.: Complete metrics of bounded curvature on noncompact manifolds. Arch. Math. (Basel) 31(1), 89–95 (1978/79)Google Scholar
  27. 27.
    Hamilton R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)zbMATHGoogle Scholar
  28. 28.
    Huisken G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Huisken G., Sinestrari C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differential Equations 8(1), 1–14 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Huisken G., Sinestrari C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183(1), 45–70 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Huisken G., Sinestrari C.: Mean curvature flow with surgeries of two-convex hypersurfaces. Invent. Math. 175(1), 137–221 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Koch H., Lamm T.: Geometric flows with rough initial data. Asian J. Math. 16(2), 209–235 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Kotschwar B.: A local version of Bando’s theorem on the real-analyticity of solutions to the Ricci flow. Bull. Lond. Math. Soc. 45(1), 153–158 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Kotschwar, B.: Time-analyticity of solutions to the Ricci flow, arXiv:1210.3083v2.
  35. 35.
    LeCrone, J., Simonett, G.: On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow, SIAM J. Math. Anal. (to appear) arXiv:1209.3998v2
  36. 36.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel (1995)Google Scholar
  37. 37.
    Morgan, J., Tian, G.: Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3. American Mathematical Society, Providence; Clay Mathematics Institute, Cambridge (2007)Google Scholar
  38. 38.
    Morrey, C.B.Jr: The analytic embedding of abstract real-analytic manifolds. Ann. of Math. 68(2), 159–201 (1958)Google Scholar
  39. 39.
    Müller, O., Nardmann, M.: Every conformal class contains a metric of bounded geometry, arXiv:1303.5957
  40. 40.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159
  41. 41.
    Perelman, G.: Ricci flow with surgery on three-manifolds, arXiv:math/0303109
  42. 42.
    Prüss, J., Simonett, G.: On the manifold of closed hypersurfaces in \({\mathbb{R}^n}\) . Discrete Contin. Dyn. Syst. 33, 5407–5428. arXiv:1212.6445 (2013)
  43. 43.
    Shao, Y.: Real analytic solutions to the Willmore flow. Electron. J. Differ. Equ. (to appear). arXiv:1302.3994
  44. 44.
    Shao, Y., Simonett, G.: Continuous maximal regularity on uniformly regular Riemannian manifolds, arXiv:1309.2041
  45. 45.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operator, North-Holland Publishing Co., Amsterdam-New York (1978)Google Scholar
  46. 46.
    Wheeler G.: Lifespan theorem for simple constrained surface diffusion flows. J. Math. Anal. Appl. 375(2), 685–698 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Wheeler G.: Surface diffusion flow near spheres. Calc. Var. Partial Differential Equations 44(1–2), 131–151 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    White B.: The size of the singular set in mean curvature flow of mean convex sets. J. Am. Math. Soc. 13(3), 665–695 (2000)CrossRefzbMATHGoogle Scholar
  49. 49.
    White B.: The nature of singularities in mean curvature flow of mean-convex sets. J. Am. Math. Soc. 16(1), 123–138 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations