Advertisement

Selecta Mathematica

, 25:79 | Cite as

Serre duality for Khovanov–Rozansky homology

  • Eugene GorskyEmail author
  • Matthew Hogancamp
  • Anton Mellit
  • Keita Nakagane
Article
  • 16 Downloads

Abstract

We prove that the full twist is a Serre functor in the homotopy category of type A Soergel bimodules. As a consequence, we relate the top and bottom Hochschild degrees in Khovanov–Rozansky homology, categorifying a theorem of Kálmán.

Mathematics Subject Classification

57M25 20C08 18E30 

Notes

Acknowledgements

The authors would like to thank Tamás Kálmán, Andrei Neguț, Alexei Oblomkov and Jacob Rasmussen for the useful discussions. We also thank American Institute of Mathematics, where a part of this work was done, for hospitality. E. G.  was partially supported by the NSF Grants DMS-1700814, DMS-1760329, and the Russian Academic Excellence Project 5-100. M.H.  was supported by NSF Grant DMS-1702274 and also partially supported by NSF Grants DMS-1664240 and DMS-1255334. A.M.  was supported by Austrian Science Fund (FWF) projects Y963-N35 and P-31705. K.N.  was supported by JSPS KAKENHI Grant No. JP19J12350.

References

  1. 1.
    Beilinson, A., Bezrukavnikov, R., Mirković, I.: Tilting exercises. Mosc. Math. J. 4(3), 547–557 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bondal, A., Kapranov, M.: Representable functors, Serre functors, and mutations. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 53(6), 1183–1205 (1989)zbMATHGoogle Scholar
  3. 3.
    Elias, B., Hogancamp, M.: Categorical diagonalization of full twists. arXiv: 1801.00191
  4. 4.
    Elias, B., Hogancamp, M.: On the computation of torus link homology. Compos. Math. 155(1), 164–205 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Elias, B., Khovanov, M.: Diagrammatics for Soergel categories. Int. J. Math. Math. Sci. 2010, 58 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Elias, B., Williamson, G.: Soergel calculus. Represent. Theory Am. Math. Soc. 20(12), 295–374 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gorsky, E., Hogancamp, M.: Hilbert schemes and y-ification of Khovanov-Rozansky homology. arXiv: 1712.03938
  8. 8.
    Gorsky, E, Neguţ, A, Rasmussen, J: Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology. arXiv: 1608.07308
  9. 9.
    Gorsky, E.: q; t–Catalan numbers and knot homology. Contemp. Math. 566, 213–232 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gorsky, E., Oblomkov, A., Rasmussen, J., Shende, V.: Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hogancamp, M.: Idempotents in triangulated monoidal categories (2017). arXiv: 1703.01001
  13. 13.
    Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links. Geom. Topol. 22(5), 2943–3002 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hoste, J., Ocneanu, A., Millett, K., Freyd, P., Lickorish, W.B.R., Yetter, D.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12(2), 239–246 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(08), 869–885 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. 12(3), 1387–1425 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Krause, H.: Localization theory for triangulated categories. In: Triangulated categories. Vol. 375. London Mathematical Society Lecture Note. Cambridge University Press, Cambridge, pp. 161–235 (2010)Google Scholar
  19. 19.
    Kálmán, T.: Meridian twisting of closed braids and the Hom y polynomial. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 146. 3. Cambridge University Press, pp. 649–660 (2009)Google Scholar
  20. 20.
    Libedinsky, N., Williamson, G.: Standard objects in 2-braid groups. Proc. Lond. Math. Soc. 109(5), 1264–1280 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mellit, A.: Homology of torus knots. arXiv: 1704.07630
  22. 22.
    Mac Lane, S.: Categories for the Working Mathematician. Second. Vol. 5. Graduate Texts in Mathematics, p. xii+314. Springer, New York (1998)zbMATHGoogle Scholar
  23. 23.
    Mazorchuk, V., Stroppel, C.: Projective-injective modules, Serre functors and symmetric algebras. Journal für die reine und angewandte Mathematik (Crelles Journal) 2008(616), 131–165 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nakagane, K.: The action of full twist on the superpolynomial for torus knots. In: Topology and its Applications, Vol. 266 (2019).  https://doi.org/10.1016/j.topol.2019.106841 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Oblomkov, A., Rasmussen, J., Shende, V.: The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link. Geom. Topol. 22(2), 645–691 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rouquier, R.: Categorification of the braid groups. arXiv:math/0409593
  27. 27.
    Rouquier, R.: Derived equivalences and finite dimensional algebras. Proc. Int. Congr. Math. 2, 191–221 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Soergel, W.: Kazhdan–Lusztig–polynome und unzerlegbare bimoduln über polynomringen. J. Inst. Math. Jussieu 6(3), 501–525 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eugene Gorsky
    • 1
    • 2
    Email author
  • Matthew Hogancamp
    • 3
  • Anton Mellit
    • 4
  • Keita Nakagane
    • 5
  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA
  2. 2.International Laboratory of Representation Theory and Mathematical PhysicsNRU-HSEMoscowRussia
  3. 3.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Faculty of MathematicsUniversity of ViennaWienAustria
  5. 5.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations