Abstract
We prove that the full twist is a Serre functor in the homotopy category of type A Soergel bimodules. As a consequence, we relate the top and bottom Hochschild degrees in Khovanov–Rozansky homology, categorifying a theorem of Kálmán.
Mathematics Subject Classification
57M25 20C08 18E30Notes
Acknowledgements
The authors would like to thank Tamás Kálmán, Andrei Neguț, Alexei Oblomkov and Jacob Rasmussen for the useful discussions. We also thank American Institute of Mathematics, where a part of this work was done, for hospitality. E. G. was partially supported by the NSF Grants DMS-1700814, DMS-1760329, and the Russian Academic Excellence Project 5-100. M.H. was supported by NSF Grant DMS-1702274 and also partially supported by NSF Grants DMS-1664240 and DMS-1255334. A.M. was supported by Austrian Science Fund (FWF) projects Y963-N35 and P-31705. K.N. was supported by JSPS KAKENHI Grant No. JP19J12350.
References
- 1.Beilinson, A., Bezrukavnikov, R., Mirković, I.: Tilting exercises. Mosc. Math. J. 4(3), 547–557 (2004)MathSciNetCrossRefGoogle Scholar
- 2.Bondal, A., Kapranov, M.: Representable functors, Serre functors, and mutations. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 53(6), 1183–1205 (1989)zbMATHGoogle Scholar
- 3.Elias, B., Hogancamp, M.: Categorical diagonalization of full twists. arXiv: 1801.00191
- 4.Elias, B., Hogancamp, M.: On the computation of torus link homology. Compos. Math. 155(1), 164–205 (2019)MathSciNetCrossRefGoogle Scholar
- 5.Elias, B., Khovanov, M.: Diagrammatics for Soergel categories. Int. J. Math. Math. Sci. 2010, 58 (2010)MathSciNetzbMATHGoogle Scholar
- 6.Elias, B., Williamson, G.: Soergel calculus. Represent. Theory Am. Math. Soc. 20(12), 295–374 (2016)MathSciNetCrossRefGoogle Scholar
- 7.Gorsky, E., Hogancamp, M.: Hilbert schemes and y-ification of Khovanov-Rozansky homology. arXiv: 1712.03938
- 8.Gorsky, E, Neguţ, A, Rasmussen, J: Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology. arXiv: 1608.07308
- 9.Gorsky, E.: q; t–Catalan numbers and knot homology. Contemp. Math. 566, 213–232 (2012)MathSciNetCrossRefGoogle Scholar
- 10.Gorsky, E., Oblomkov, A., Rasmussen, J., Shende, V.: Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)MathSciNetCrossRefGoogle Scholar
- 11.Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)MathSciNetCrossRefGoogle Scholar
- 12.Hogancamp, M.: Idempotents in triangulated monoidal categories (2017). arXiv: 1703.01001
- 13.Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links. Geom. Topol. 22(5), 2943–3002 (2018)MathSciNetCrossRefGoogle Scholar
- 14.Hoste, J., Ocneanu, A., Millett, K., Freyd, P., Lickorish, W.B.R., Yetter, D.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12(2), 239–246 (1985)MathSciNetCrossRefGoogle Scholar
- 15.Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)MathSciNetCrossRefGoogle Scholar
- 16.Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(08), 869–885 (2007)MathSciNetCrossRefGoogle Scholar
- 17.Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. 12(3), 1387–1425 (2008)MathSciNetCrossRefGoogle Scholar
- 18.Krause, H.: Localization theory for triangulated categories. In: Triangulated categories. Vol. 375. London Mathematical Society Lecture Note. Cambridge University Press, Cambridge, pp. 161–235 (2010)Google Scholar
- 19.Kálmán, T.: Meridian twisting of closed braids and the Hom y polynomial. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 146. 3. Cambridge University Press, pp. 649–660 (2009)Google Scholar
- 20.Libedinsky, N., Williamson, G.: Standard objects in 2-braid groups. Proc. Lond. Math. Soc. 109(5), 1264–1280 (2014)MathSciNetCrossRefGoogle Scholar
- 21.Mellit, A.: Homology of torus knots. arXiv: 1704.07630
- 22.Mac Lane, S.: Categories for the Working Mathematician. Second. Vol. 5. Graduate Texts in Mathematics, p. xii+314. Springer, New York (1998)zbMATHGoogle Scholar
- 23.Mazorchuk, V., Stroppel, C.: Projective-injective modules, Serre functors and symmetric algebras. Journal für die reine und angewandte Mathematik (Crelles Journal) 2008(616), 131–165 (2008)MathSciNetCrossRefGoogle Scholar
- 24.Nakagane, K.: The action of full twist on the superpolynomial for torus knots. In: Topology and its Applications, Vol. 266 (2019). https://doi.org/10.1016/j.topol.2019.106841 MathSciNetCrossRefGoogle Scholar
- 25.Oblomkov, A., Rasmussen, J., Shende, V.: The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link. Geom. Topol. 22(2), 645–691 (2018)MathSciNetCrossRefGoogle Scholar
- 26.Rouquier, R.: Categorification of the braid groups. arXiv:math/0409593
- 27.Rouquier, R.: Derived equivalences and finite dimensional algebras. Proc. Int. Congr. Math. 2, 191–221 (2006)MathSciNetzbMATHGoogle Scholar
- 28.Soergel, W.: Kazhdan–Lusztig–polynome und unzerlegbare bimoduln über polynomringen. J. Inst. Math. Jussieu 6(3), 501–525 (2007)MathSciNetCrossRefGoogle Scholar