Selecta Mathematica

, 25:64 | Cite as

Multiplicative Hitchin systems and supersymmetric gauge theory

  • Chris ElliottEmail author
  • Vasily Pestun


Multiplicative Hitchin systems are analogues of Hitchin’s integrable system based on moduli spaces of G-Higgs bundles on a curve C where the Higgs field is group-valued, rather than Lie algebra valued. We discuss the relationship between several occurences of these moduli spaces in geometry and supersymmetric gauge theory, with a particular focus on the case where \(C = \mathbb {CP}^1\) with a fixed framing at infinity. In this case we prove that the identification between multiplicative Higgs bundles and periodic monopoles proved by Charbonneau and Hurtubise can be promoted to an equivalence of hyperkähler spaces, and analyze the twistor rotation for the multiplicative Hitchin system. We also discuss quantization of these moduli spaces, yielding the modules for the Yangian \(Y(\mathfrak {g})\) discovered by Gerasimov, Kharchev, Lebedev and Oblezin.

Mathematics Subject Classification

14D21 53D30 



We would like to thank David Jordan, Davide Gaiotto, Dennis Gaitsgory, Nikita Nekrasov, Kevin Costello and especially Pavel Safronov for helpful conversations about this work. The calculation of twists of 5d and 6d supersymmetric gauge theories was performed independently by Dylan Butson, and we would like to thank him for sharing his forthcoming manuscript. We are also very grateful to Takuro Mochizuki for pointing out an error in an earlier version of the article. CE would like to thank the Perimeter Institute for Theoretical Physics for supporting research on this project. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation. We acknowledge the support of IHÉS. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (QUASIFT Grant Agreement 677368).


  1. 1.
    Aganagic, M., Frenkel, E., Okounkov, A.: Quantum \(q\)-Langlands correspondence. arXiv preprint arXiv:1701.03146 (2017)
  2. 2.
    Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Modern Phys. A 12(7), 1405–1429 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anchouche, B., Biswas, I.: Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold. Am. J. Math. 123(2), 207–228 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Arinkin, D., Gaitsgory, D.: Singular support of coherent sheaves and the geometric Langlands conjecture. Sel. Math. New Ser. 21(1), 1–199 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arutyunov, G., Frolov, S., Medvedev, P.: Elliptic Ruijsenaars–Schneider model from the cotangent bundle over the two-dimensional current group. J. Math. Phys. 38, 5682–5689 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Arutyunov, G., Frolov, S., Medvedev, P.: Elliptic Ruijsenaars–Schneider model via the Poisson reduction of the affine Heisenberg double. J. Phys. A 30, 5051–5063 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ashwinkumar, M., Tan, M.-C., Zhao, Q.: Branes and categorifying integrable lattice models. arXiv preprint arXiv:1806.02821 (2018)
  8. 8.
    Atiyah, M., Hitchin, N.: The Geometry and Dynamics of Magnetic Monopoles. M. B. Porter Lectures. Princeton University Press, Princeton, NJ (1988)zbMATHCrossRefGoogle Scholar
  9. 9.
    Avan, J., Frappat, L., Ragoucy, E.: Elliptic deformation of \(\cal{W}_N\)-algebras. arXiv preprint arXiv:1810.11410 (2018)
  10. 10.
    Baker, H.: Examples of the application of Newton’s polygon to the theory of singular points of algebraic functions. Trans. Camb. Philos. Soc. 15, 403 (1894)Google Scholar
  11. 11.
    Baulieu, L.: \({\rm SU}(5)\)-invariant decomposition of ten-dimensional Yang–Mills supersymmetry. Phys. Lett. B 698(1), 63–67 (2011)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. preprint, available at (1997). Accessed Sept 2019
  13. 13.
    Biquard, O., Jardim, M.: Asymptotic behaviour and the moduli space of doubly-periodic instantons. J. Eur. Math. Soc. 3(4), 335–375 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bottacin, F.: Poisson structures on moduli spaces of sheaves over Poisson surfaces. Invent. Math. 121(2), 421–436 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bottacin, F.: Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. École Norm. Sup. (4) 28(4), 391–433 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bottacin, F.: Poisson structures on moduli spaces of parabolic bundles on surfaces. Manuscr. Math. 103(1), 31–46 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bouthier, A.: La fibration de Hitchin–Frenkel–Ngô et son complexe d’intersection. arXiv preprint arXiv:1409.1275 (2014)
  18. 18.
    Bouthier, A.: Dimension des fibres de Springer affines pour les groupes. Transform. Groups 20(3), 615–663 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Braden, H., Dolgushev, V., Olshanetsky, M., Zotov, A.: Classical R matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions. J. Phys. A 36, 6979–7000 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Butson, D.: Omega backgrounds and boundary theories in twisted supersymmetric gauge theories. Forthcoming (2019)Google Scholar
  21. 21.
    Calaque, D.: Lagrangian structures on mapping stacks and semi-classical TFTs. In: Pantev, T., Simpson, C., Toën, B., Vaquié, M., Vezzosi, G. (eds.) Stacks and Categories in Geometry, Topology, and Algebra. Contemporary Mathematics, vol. 643, pp. 1–23. American Mathematical Society, Providence, RI (2015)zbMATHCrossRefGoogle Scholar
  22. 22.
    Calaque, D., Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and deformation quantization. J. Topol. 10(2), 483–584 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Charbonneau, B., Hurtubise, J.: Singular Hermitian–Einstein monopoles on the product of a circle and a Riemann surface. Int. Math. Res. Not. 2011(1), 175–216 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  25. 25.
    Chen, Heng-Yu., Dorey, Nick, Hollowood, Timothy J., Lee, Sungjay: A new 2d/4d duality via integrability. J. High Energy Phys. 16(9), 40 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Cherkis, S., Kapustin, A.: Singular monopoles and supersymmetric gauge theories in three dimensions. Nucl. Phys. B 525(1–2), 215–234 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Cherkis, S., Kapustin, A.: Nahm transform for periodic monopoles and \(\cal{N}= 2\) super Yang–Mills theory. Commun. Math. Phys. 218(2), 333–371 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Cherkis, S., Kapustin, A.: Hyper-Kähler metrics from periodic monopoles. Phys. Rev. D 65(8), 084015 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chernyakov, Y., Levin, A., Olshanetsky, M., Zotov, A.: Quadratic algebras related to elliptic curves. arXiv e-prints arXiv:0710.1072 (2007)
  30. 30.
    Costello, K.: Renormalization and Effective Field Theory, vol. 170. American Mathematical Society, Providence (2011)zbMATHGoogle Scholar
  31. 31.
    Costello, K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. In Special Issue: In Honor of Dennis Sullivan. Pure and Applied Mathematics Quarterly, vol. 9 (2013)Google Scholar
  32. 32.
    Costello, K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. Pure Appl. Math. Q. 9(1), 73–165 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Costello, K.: Supersymmetric gauge theory and the Yangian. arXiv preprint arXiv:1303.2632 (2013)
  34. 34.
    Costello, K.: Integrable systems and quantum groups from quantum field theory. 2017. Lecture, String-Math, Hamburg (25 July 2017). (2017). Accessed Sept 2019
  35. 35.
    Costello, K., Yagi, J.: Unification of integrability in supersymmetric gauge theories. arXiv preprint arXiv:1810.01970 (2018)
  36. 36.
    Donagi, R.: Geometry and integrability. In: Mason, L. (ed.) Geometry and Integrability, London Mathematical Society. Lecture Note Series, vol. 295, pp. 21–59. Cambridge University Press, Cambridge (2003)Google Scholar
  37. 37.
    Donagi, R., Gaitsgory, D.: The gerbe of Higgs bundles. Transform. Groups 7(2), 109–153 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Donagi, R., Pantev, T.: Lectures on the geometric Langlands conjecture and non-Abelian Hodge theory. Second International School on Geometry and Physics Geometric Langlands and Gauge Theory, p. 129 (2010)Google Scholar
  39. 39.
    Donaldson, S., Kronheimer, P.: The geometry of four-manifolds. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  40. 40.
    Dorey, N., Lee, S., Hollowood, T.J.: Quantization of integrable systems and a 2d/4d duality. J. High Energy Phys. 42(10), 77 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Drinfeld, V.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Berkeley, CA, 1986), pp. 798–820. American Mathematical Society, Providence, RI (1987)Google Scholar
  42. 42.
    Drinfel’d, V.: Hopf algebras and the quantum Yang–Baxter equation. In: Jimbo, M. (ed.) Yang–Baxter Equation in Integrable Systems, pp. 264–268. World Scientific, Singapore (1990)CrossRefGoogle Scholar
  43. 43.
    Eager, R., Saberi, I., Walcher, J.: Nilpotence varieties (2018). arXiv:1807.03766
  44. 44.
    Elliott, C., Safronov, P.: Topological twists of supersymmetric algebras of observables. Commun. Math. Phys. (2019).
  45. 45.
    Elliott, C., Yoo, P.: Geometric Langlands twists of \(N=4\) gauge theory from derived algebraic geometry. Adv. Theor. Math. Phys. 22(3), 615–708 (2018)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Elliott, C., Yoo, P.: A physical origin for singular support conditions in geometric Langlands theory. Commun. Math. Phys. 368(3), 985–1050 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, III. Sel. Math. New Ser. 4(2), 233 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang–Baxter equation. Commun. Math. Phys. 192(1), 77–120 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Finkelberg, M., Kuznetsov, A., Rybnikov, L., Dobrovolska, G.: Towards a cluster structure on trigonometric Zastava. Sel. Math. (N.S.) 24(1), 187–225 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Foscolo, L.: On moduli spaces of periodic monopoles and gravitational instantons. Ph.D. thesis, Imperial College, London (2013)Google Scholar
  51. 51.
    Foscolo, L.: Deformation theory of periodic monopoles (with singularities). Commun. Math. Phys. 341(1), 351–390 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Foscolo, L.: A gluing construction for periodic monopoles. Int. Math. Res. Not. IMRN 24, 7504–7550 (2017)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Frassek, R., Pestun, V.: A family of \({\rm GL}(r)\) multiplicative Higgs bundles on rational base. arXiv preprint arXiv:1808.00799 (2018)
  54. 54.
    Frenkel, E., Mukhin, E.: Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23–57 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Frenkel, E., Ngô, B.C.: Geometrization of trace formulas. Bull. Math. Sci. 1(1), 129–199 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Frenkel, E., Reshetikhin, N.: Deformations of \(\cal{W}\)-algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1–32 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  57. 57.
    Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \(\cal{W}\)-algebras. In: Jing, N., Misra, K.C. (eds.) Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemporary Mathematics, vol. 248, pp. 163–205. American Mathematical Society, Providence, RI (1999)CrossRefGoogle Scholar
  58. 58.
    Frenkel, E., Reshetikhin, N., Semenov-Tian-Shansky, M.: Drinfeld–Sokolov reduction for difference operators and deformations of \(\cal{W}\)-algebras \(I\). The case of Virasoro algebra. Commun. Math. Phys. 192(3), 605–629 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Gaiotto, D.: Opers and TBA. arXiv preprint arXiv:1403.6137 (2014)
  60. 60.
    Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry. I. Correspondences and Duality. Mathematical Surveys and Monographs, vol. 221. American Mathematical Society, Providence, RI (2017)zbMATHCrossRefGoogle Scholar
  61. 61.
    Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry. II. Deformations, Lie Theory and Formal Geometry, Mathematical Surveys and Monographs, vol. 221. American Mathematical Society, Providence, RI (2017)zbMATHGoogle Scholar
  62. 62.
    Gelfand, I., Cherednik, I.: Abstract Hamiltonian formalism for classical Yang–Baxter bundles. Akad. Nauk SSSR Inst. Prikl. Mat. 38(208), 29 (1982). (preprint)MathSciNetGoogle Scholar
  63. 63.
    Gerasimov, A., Kharchev, S., Lebedev, D.: Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model. Int. Math. Res. Not. 2004(17), 823–854 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of the Yangian and moduli space of monopoles. Commun. Math. Phys. 260(3), 511–525 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Ginzburg, V., Rozenblyum, N.: Gaiotto’s Lagrangian subvarieties via derived symplectic geometry. Algebras Represent. Theory 21(5), 1003–1015 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Hennion, B.: Formal loops and tangent Lie algebras. Ph.D. thesis, Université de Montpellier (2015)Google Scholar
  67. 67.
    Hurtubise, J., Markman, E.: Elliptic Sklyanin integrable systems for arbitrary reductive groups. Adv. Theor. Math. Phys. 6(5), 873–978 (2002)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Hurtubise, J., Markman, E.: Surfaces and the Sklyanin bracket. Commun. Math. Phys. 230(3), 485–502 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857–893 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Kapustin, A.: Holomorphic reduction of \(N=2\) gauge theories, Wilson-’t Hooft operators, and S-duality (2006)Google Scholar
  71. 71.
    Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Khovanskiĭ, A.: Newton polyhedra, and toroidal varieties. Funkcional. Anal. i Priložen. 11(4), 56–64 (1977). 96MathSciNetGoogle Scholar
  73. 73.
    Kimura, T., Pestun, V.: Quiver W-algebras. Lett. Math. Phys. 108(6), 1351–1381 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Knight, H.: Spectra of tensor products of finite-dimensional representations of Yangians. J. Algebra 174(1), 187–196 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Koroteev, P., Sage, D., Zeitlin, A.: \(({\rm SL}(N), q)\)-opers, the \(q\)-Langlands correspondence, and quantum/classical duality. arXiv preprint arXiv:1811.09937 (2018)
  77. 77.
    Laszlo, Y.: About \(G\)-bundles over elliptic curves. Ann. Inst. Fourier (Grenoble) 48(2), 413–424 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  78. 78.
    Melani, V., Safronov, P.: Derived coisotropic structures. arXiv preprint arXiv:1608.01482 (2016)
  79. 79.
    Melani, V., Safronov, P.: Derived coisotropic structures II: stacks and quantization. arXiv preprint arXiv:1704.03201 (2017)
  80. 80.
    Mochizuki, T.: Kobayashi–Hitchin correspondence for analytically stable bundles. arXiv preprint arXiv:1712.08978 (2017)
  81. 81.
    Mochizuki, T.: Periodic monopoles and difference modules. arXiv preprint arXiv:1712.08981 (2017)
  82. 82.
    Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or \(K3\) surface. Invent. Math. 77(1), 101–116 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  83. 83.
    Mukai, S.: Moduli of vector bundles on \(K3\) surfaces and symplectic manifolds. Sugaku Expo. 1(2), 139–174 (1988)zbMATHGoogle Scholar
  84. 84.
    Mukhin, E., Varchenko, A.: Discrete Miura opers and solutions of the Bethe Ansatz equations. Commun. Math. Phys. 256(3), 565–588 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Nekrasov, N.: Four dimensional holomorphic theories. Ph.D. thesis, Princeton University (1996).
  86. 86.
    Nekrasov, N.: BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and \(qq\)-characters. J. High Energy Phys. 2016(3), 181 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  87. 87.
    Nekrasov, N.: Open-closed (little) string duality and Chern–Simons–Bethe/gauge correspondence. Lecture, String-Math, Hamburg (28 July 2017). (2017)
  88. 88.
    Nekrasov, N., Pestun, V.: Seiberg–Witten geometry of four dimensional \(\cal{N}= 2\) quiver gauge theories. arXiv preprint arXiv:1211.2240 (2012)
  89. 89.
    Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories. Commun. Math. Phys. 357(2), 519–567 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3–8, 2009, pp. 265–289 (2009)Google Scholar
  91. 91.
    Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009)zbMATHCrossRefGoogle Scholar
  92. 92.
    Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. l’IHÉS 117(1), 271–328 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Pauly, M.: Monopole moduli spaces for compact 3-manifolds. Math. Ann. 311(1), 125–146 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Pestun, V.: Periodic Monopoles and qOpers. Lecture, String-Math, Hamburg (28 July 2017). (2017)
  95. 95.
    Polishchuk, A., Rothstein, M.: Fourier transform for \(D\)-algebras, I. Duke Math. J. 109(1), 123–146 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  96. 96.
    Popov, V.: Cross-sections, quotients, and representation rings of semisimple algebraic groups. Transform. Groups 16(3), 827–856 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Qiu, J., Zabzine, M.: On twisted \(\cal{N}= 2\) 5D super Yang–Mills theory. Lett. Math. Phys. 106(1), 1–27 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  98. 98.
    Sauloy, J.: Isomonodromy for complex linear \(q\)-difference equations. In: Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14, pp. 249–280. Société mathématique de France, Paris (2006)Google Scholar
  99. 99.
    Semenov-Tian-Shansky, M., Sevostyanov, A.: Drinfeld–Sokolov reduction for difference operators and deformations of \(\cal{W}\)-algebras II. The general semisimple case. Commun. Math. Phys. 192(3), 631–647 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  100. 100.
    Sevostyanov, A.: Drinfeld–Sokolov reduction for quantum groups and deformations of \(W\)-algebras. Sel. Math. (N.S.) 8(4), 637–703 (2002)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Sevostyanov, A.: Conjugacy classes in Weyl groups and q-W algebras. Adv. Math. 228(3), 1315–1376 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Shapiro, A.: Poisson geometry of monic matrix polynomials. Int. Math. Res. Not. 17, 5427–5453 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Simpson, C.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1(4), 867–918 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Sklyanin, E.: Quantum variant of the method of the inverse scattering problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 95, 55–128, 161 (1980). Differential geometry, Lie groups and mechanics, IIIGoogle Scholar
  105. 105.
    Smith, B.H.: Singular \(G\)-monopoles on \(S^1\times \Sigma \). Can. J. Math. 68(5), 1096–1119 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  106. 106.
    Spaide, T.: Shifted symplectic and Poisson structures on spaces of framed maps. arXiv preprint arXiv:1607.03807 (2016)
  107. 107.
    Steinberg, R.: Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math. 25, 49–80 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Toën, B.: Higher and derived stacks: a global overview. Proc. Symp. Pure Math. 80, 435–487 (2005)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Williams, H.: Double Bruhat cells in Kac-Moody groups and integrable systems. Lett. Math. Phys. 103(4), 389–419 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Witten, E.: Geometric Langlands from six dimensions. In: Bott, R. (ed.) A Celebration of the Mathematical Legacy of Raoul Bott, CRM Proceedings and Lecture Notes, vol. 50, pp. 281–310. American Mathematical Society, Providence, RI (2010)CrossRefGoogle Scholar
  114. 114.
    Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. In: Bezrukavnikov, R., Braverman, A., Yun, Z. (eds.) Geometry of Moduli Spaces and Representation Theory, IAS/Park City Mathematics Series, vol. 24, pp. 59–154. American Mathematical Society, Providence, RI (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance

Personalised recommendations