Advertisement

Selecta Mathematica

, 25:29 | Cite as

Series of rational moduli components of stable rank two vector bundles on \(\pmb {\mathbb {P}}^3\)

  • A. A. Kytmanov
  • A. S. TikhomirovEmail author
  • S. A. Tikhomirov
Article
  • 14 Downloads

Abstract

We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker–Maruyama moduli space M(en) of rank 2 stable vector bundles with the first Chern class \(e=0\) or \(-1\) and all possible values of the second Chern class n on the projective space \({{\mathbb {P}}^{3}}\). We show that, in a wide range of cases, the Ein components are rational, and in the remaining cases they are at least stably rational. As a consequence, the union of the spaces M(en) over all \(n\ge 1\) contains new series of rational components in the case \(e=0\), exteding and improving previously known results of Vedernikov (Math USSSR-Izv 25:301–313, 1985) on series of rational families of bundles, and a first known infinite series of rational components in the case \(e=-\,1\). Explicit constructions of rationality (stable rationality) of Ein components are given. Our approach is based on the study of a correspondence between generalized null correlation bundles constituting open subsets of Ein components and certain rank 2 reflexive sheaves on \({{\mathbb {P}}^{3}}\). This correspondence is obtained via elementary transformations along surfaces. We apply the technique of Quot-schemes and universal spaces of extensions of sheaves to relate the parameter spaces of these two types of sheaves. In the case of rationality, we construct universal families of generalized null correlation bundles over certain open subsets of Ein components showing that these subsets are fine moduli spaces. As a by-product of our construction, for \(c_1=0\) and n even, they provide, perhaps the first known, examples of fine moduli spaces not satisfying the condition “n is odd”, which is a usual sufficient condition for fineness.

Keywords

Rank 2 bundles Moduli of stable bundles Rational varieties 

Mathematics Subject Classification

14D20 14E08 14J60 

Notes

Acknowledgements

AAK was supported by the Russian Science Foundation under grant 18-71-10007. AST was supported by a subsidy to the HSE from the Government of the Russian Federation for the implementation of Global Competitiveness Program. AST also acknowledges the support from the Max Planck Institute for Mathematics in Bonn, where this work was partially done during the winter of 2017.

References

  1. 1.
    Almeida, C., Jardim, M., Tikhomirov, A., Tikhomirov, S.: New moduli components of rank 2 bundles on projective space. arXiv:1702.06520 [math.AG]
  2. 2.
    Banica, C., Manolache, N.: Rank 2 stable vector bundles on \(\mathbb{P}^3(\mathbb{C})\) with Chern classes \(c_1 = - 1\), \(c_2 = 4\). Math. Z. 190, 315–339 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banica, C., Putinar, M., Schumacher, G.: Variation der globalen Ext in Deformationen kompakter komplexer Räume. Math. Ann. 250, 135–155 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barth, W.: Stable vector bundles on \(\mathbb{P}_3\), some experimental data. In: Les équations de Yang–Mills, Séminaire E.N.S. 1977/78, Exposé XIII, Astérisque 71–72, 205–218 (1980)Google Scholar
  5. 5.
    Barth, W.: Irreducibility of the space of mathematical instanton bundles with rank 2 and \(c_2 = 4\). Math. Ann. 258, 81–106 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barth, W., Hulek, K.: Monads and moduli of vector bundles. Manuscr. Math. 25, 323–347 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coanda, I., Tikhomirov, A., Trautmann, G.: Irreducibility and smoothness of the moduli space of mathematical 5-instantons over P3. Int. J. Math. 14(1), 1–45 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chang, M.-C.: Stable rank 2 bundles on \({\mathbb{P}}^{3}\) with \(c_1=0\), \(c_2=4\) and \(\alpha =1\). Math. Z. 184, 407–415 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ein, L.: Generalized null correlation bundles. Nagoya Math. J. 111, 13–24 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ellingsrud, G., Stromme, S.A.: Stable rank \(2\) vector bundles on \(\mathbb{P}^{3}\) with \(c_1 = 0\) and \(c_2 = 3\). Math. Ann. 255, 123–135 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)CrossRefGoogle Scholar
  12. 12.
    Hartshorne, R.: Stable vector bundles of rank 2 on \(\mathbf{P}^3\). Math. Ann. 238, 229–280 (1978)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hartshorne, R.: Stable reflexive sheaves. Math. Ann. 254, 121–176 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hartshorne, R., Rao, A.P.: Spectra and monads of stable bundles. J. Math. Kyoto Univ. 31(3), 789–806 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hartshorne, R., Sols, I.: Stable rank 2 vector bundles on \(\mathbb{P}^3\) with c \(c_1=-1, c_2 = 2\). J. Reine Angew. Math. 325, 145–152 (1981)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hirschowitz, A., Narasimhan, M.S.: Fibres de ’t Hooft speciaux et applications. Enumerative geometry and classical algebraic geometry. Prog. Math. 24, 143–164 (1982)zbMATHGoogle Scholar
  17. 17.
    Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  18. 18.
    Katsylo, P. I.: Rationality of the moduli variety of mathematical instantons with \(c_2=5\). In: Lie groups, their discrete subgroups, and invariant theory. Advances in Soviet Mathematics 8, 105–111 (1992)Google Scholar
  19. 19.
    Kytmanov, A.A., Osipov, N.N., Tikhomirov, S.A.: Finding Ein components in the moduli spaces of stable rank 2 bundles on the projective 3-space. Sib. Math. J. 57(2), 322–329 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lange, H.: Universal families of extensions. J. Algebra 83, 101–112 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces, 2nd edn. Springer, Basel (2011)zbMATHGoogle Scholar
  22. 22.
    Rao, A.P.: A note on cohomology modules of rank two bundles. J. Algebra 86, 23–34 (1984)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tikhomirov, A.S.: Moduli of mathematical instanton vector bundles with odd \(c_2\) on projective space. Izv. Math. 76, 991–1073 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tikhomirov, A.S.: Moduli of mathematical instanton vector bundles with even \(c_2\) on projective space. Izv. Math. 77, 1331–1355 (2013)CrossRefGoogle Scholar
  25. 25.
    Tikhomirov, A., Tikhomirov, S., Vassiliev, D.: Construction of stable rank 2 vector bundles on \(\mathbb{P}^3\) via symplectic bundles. Sib. Math. J. 60(2), 343–358 (2019)Google Scholar
  26. 26.
    Tikhomirov, S.A.: Families of stable bundles of rank 2 with \(c_1=-1\) on the space \(\mathbb{P}^3\). Sib. Math. J. 55(6), 1137–1143 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Vedernikov, V.K.: Moduli of stable vector bundles of rank 2 on \(P_3\) with fixed spectrum. Math. USSR-Izv. 25, 301–313 (1985)CrossRefGoogle Scholar
  28. 28.
    Vedernikov, V.: The moduli of super-null-correlation bundles on \(\mathbf{P}_3\). Math. Ann. 276, 365–383 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Space and Information TechnologySiberian Federal UniversityKrasnoyarskRussia
  2. 2.Faculty of MathematicsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.Department of Physics and MathematicsYaroslavl State Pedagogical UniversityYaroslavlRussia

Personalised recommendations