Selecta Mathematica

, 25:7 | Cite as

The L-homology fundamental class for IP-spaces and the stratified Novikov conjecture

  • Markus Banagl
  • Gerd LauresEmail author
  • James E. McClure


An IP-space is a pseudomanifold whose defining local properties imply that its middle perversity global intersection homology groups satisfy Poincaré duality integrally. We show that the symmetric signature induces a map of Quinn spectra from IP bordism to the symmetric L-spectrum of \({\mathbb {Z}}\), which is, up to weak equivalence, an \(E_\infty \) ring map. Using this map, we construct a fundamental L-homology class for IP-spaces, and as a consequence we prove the stratified Novikov conjecture for IP-spaces whose fundamental group satisfies the Novikov conjecture.


Intersection homology Stratified spaces pseudomanifolds Signature Characteristic classes Bordism L-theory Novikov conjecture 

Mathematics Subject Classification

55N33 57R67 57R20 57N80 19G24 



  1. 1.
    Adams, J.F.: Stable Homotopy and Generalised Homology, Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1974)Google Scholar
  2. 2.
    Albin, P., Banagl, M., Leichtnam, E., Mazzeo, R., Piazza, P.: Refined intersection homology on non-Witt spaces. arXiv:1308.3725
  3. 3.
    Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: The signature package on Witt spaces. Ann. Sci. École. Norm. Supérieure. (4) 45, 241–310 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: The Novikov conjecture on Cheeger spaces. arXiv:1308.2844
  5. 5.
    Baas, N., Laures, G.: Singularities and Quinn spectra. Münster J. Math. arXiv:1404.5395
  6. 6.
    Banagl, M.: Extending intersection homology type invariants to non-Witt spaces. Memoirs Am. Math. Soc. 160(760), 1–83 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Banagl, M.: Topological Invariants of Stratified Spaces, Springer Monographs in Mathematics. Springer, Berlin (2007)zbMATHGoogle Scholar
  8. 8.
    Banagl, M.: The signature of singular spaces and its refinements to generalized homology theories, in: Friedman, G., Hunsicker, E., Libgober, A., Maxim, L. (eds.) Topology of Stratified Spaces, Mathematical Sciences Research Institute Publications, vol 58, pp. 223 – 249. Cambridge University Press, New York (2011)Google Scholar
  9. 9.
    Banagl, M., Cappell, S.E., Shaneson, J.L.: Computing twisted signatures and L-classes of stratified spaces. Math. Ann. 326(3), 589–623 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Blumberg, A., Mandel, M.: Localization theorems in topological Hochschild homology and topological cyclic homology. Geom. Topol. 16, 1053–1120 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Borel, A., et al.: Intersection Cohomology, Progr. Math., vol. 50. Birkhäuser Verlag, Boston (1984)CrossRefGoogle Scholar
  12. 12.
    Cappell, S.E., Shaneson, J.L., Weinberger, S.: Classes topologiques caractéristiques pour les actions de groupes sur les espaces singuliers. C. R. Acad. Sci. Paris Sér. I Math. 313, 293–295 (1991)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cohen, D.C., Goresky, M., Ji, L.: On the Künneth formula for intersection cohomology. Trans. Am. Math. Soc. 333, 63–69 (1992)zbMATHGoogle Scholar
  14. 14.
    Conner, P.: Differentiable Periodic Maps, Lecture Notes in Mathematics, vol. 738, 2nd edn. Springer, Berlin (1979)CrossRefGoogle Scholar
  15. 15.
    Davis, J.: Manifold aspects of the Novikov conjecture, in: Cappell, S., Ranicki, A., Rosenberg, J. (eds.) Surveys on Surgery Theory, vol 1, Annals of Math. Studies 145, pp. 195–224. Princeton University Press (2000)Google Scholar
  16. 16.
    Davis, J., Kirk, P.: Lecture Notes in Algebraic Topology, Graduate Studies in Mathematics, volume 35. American Mathematical Society, Providence (2001)Google Scholar
  17. 17.
    Eppelmann, T.: Signature homology and symmetric L-theory. Ph.D. thesis, Ruprecht-Karls Universität, Heidelberg (2007)Google Scholar
  18. 18.
    Eppelmann, T.: Stratified fibrations and the intersection homology of the regular neighborhoods of bottom strata. Topol. Appl. 134, 69–109 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Friedman, G.: Singular chain intersection homology for traditional and super-perversities. Trans. Am. Math. Soc. 359, 1977–2019 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Friedman, G.: Singular intersection homology. Available at
  21. 21.
    Friedman, G.: Stratified and unstratified bordism of pseudomanifolds. Topology Appl. 194, 51–92 (2015).
  22. 22.
    Friedman, G., McClure, J.: Cup and cap products in intersection (co)homology. Adv. Math. 240, 383–426 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Friedman, G., McClure, J.: The symmetric signature of a Witt space. J. Topol. Anal. 5, 121–159 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Goresky, M., MacPherson, R.D.: Intersection homology theory. Topology 19, 135–162 (1980)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Goresky, M., MacPherson, R.D.: Intersection homology II. Invent. Math. 71, 77–129 (1983)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Goresky, R.M., Siegel, P.H.: Linking pairings on singular spaces. Comm. Math. Helv. 58, 96–110 (1983)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hilton, P., Stammbach, U.: A Course in Homological Aalgebra, Graduate Texts in Mathematics, vol. 4. Springer, Berlin (1971)CrossRefGoogle Scholar
  28. 28.
    Hirschhorn, P.: Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  29. 29.
    Hovey, M., Shipley, B., Smith, J.: Symmetric spectra. JAMS 13, 149–208 (2000)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  31. 31.
    Kühl, P., Macko, T., Mole, A.: The total surgery obstruction revisited Münster. J. Math. 6, 181–269 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Laures, G., McClure, J.E.: Multiplicative properties of Quinn spectra. Forum Math. 26(4), 1117–1185 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Laures, G., McClure, J.E.: Commutativity properties of Quinn spectra.
  34. 34.
    Lück, W.: Transformation Groups and Algebraic \(K\)-Theory, Lecture Notes in Mathematics, vol. 1408. Springer, Berlin (1989)CrossRefGoogle Scholar
  35. 35.
    Miščenko, A.S.: Homotopy invariants of non-simply connected manifolds. III. Higher signatures. Izv. Akad. Nauk SSSR Ser. mat. 35, 1316–1355 (1971)MathSciNetGoogle Scholar
  36. 36.
    Mandell, M., May, J.P., Schwede, S., Shipley, B.: Model categories of diagram spectra. Proc. Lond. Math. Soc. (3) 82, 441–512 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    May, J.P.: Simplicial objects in algebraic topology Reprint of the 1967 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)Google Scholar
  38. 38.
    Munkres, J.: Elements of Algebraic Topology. Perseus Book Publishing, New York (1984)zbMATHGoogle Scholar
  39. 39.
    Pardon, W.L.: Intersection homology, Poincaré spaces and the characteristic variety theorem. Comment. Math. Helv. 65, 198–233 (1990)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Quinn, F.: Assembly maps in bordism-type theories, in: Novikov Conjectures, Index Theorems and Rigidity (Oberwolfach, 1993), volume 1, London Mathematical Society Lecture Series, vol 226. Cambridge University Press (1995)Google Scholar
  41. 41.
    Ranicki, A.A.: The algebraic theory of surgery, I. Foundations. Proc. Lond. Math. Soc. 40, 87–192 (1980)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Ranicki, A.A.: Algebraic L-Theory and Topological Manifolds, Cambridge Tracts in Math., vol. 102. Cambridge University Press, Cambridge (1992)Google Scholar
  43. 43.
    Rezk, C.: Frobenius pairs and Atiyah duality. arXiv:1303.3567
  44. 44.
    Rourke, C.P., Sanderson, B.J.: On \(\Delta \)-sets I. Q. J. Math. Oxford (2) 22, 321–338 (1971)CrossRefGoogle Scholar
  45. 45.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 69. Springer, Berlin (1972)CrossRefGoogle Scholar
  46. 46.
    Rudyak, YuB: On Thom Spectra, Orientability, and Cobordism, Springer Monographs in Mathematics. Springer, Berlin (1998)zbMATHGoogle Scholar
  47. 47.
    Schwede, S.: On the homotopy groups of symmetric spectra. Geom. Topol. 12, 1313–1344 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Schwede, S.: An untitled book project about symmetric spectra, version 2.4, July 12, 2007.
  49. 49.
    Siegel, P.H.: Witt spaces: a geometric cycle theory for KO-homology at odd primes. Am. J. Math. 105, 1067–1105 (1983)CrossRefGoogle Scholar
  50. 50.
    Stong, R.: Notes on Cobordism Theory. Princeton University Press, Princeton (1968)zbMATHGoogle Scholar
  51. 51.
    Weibel, C.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  52. 52.
    Weinberger, S.: The Topological Classification of Stratified Spaces, Chicago Lecture Notes in Mathematics. University of Chicago Press, Chicago (1994)Google Scholar
  53. 53.
    Weiss, M., Williams, B.: Automorphisms of manifolds and algebraic K-theory. II. J. Pure Appl. Algebra 62, 47–107 (1989)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Weiss, M., Williams, B.: Assembly, in: Novikov Conjectures, Index Theorems and Rigidity (Oberwolfach, 1993), vol 2, London Mathematical Society Lecture Series 226. Cambridge University Press (1995)Google Scholar
  55. 55.
    Whitehead, G.: Elements of Homotopy Theory, Graduate Texts in Math., vol. 61. Springer, Berlin (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Fakultät für MathematikRuhr-Universität BochumBochumGermany
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations