Advertisement

Selecta Mathematica

, 25:14 | Cite as

Lengths of developments in K((G))

  • Julia F. Knight
  • Karen LangeEmail author
Article

Abstract

Mourgues and Ressayre (J Symb Logic 58:641–647, 1993) showed that every real closed field F has an integer part, where this is an ordered subring with the properties appropriate for the range of a floor function. The Mourgues and Ressayre construction is canonical once we fix a residue field section K and a well ordering \(\prec \) of F. The construction produces a section of the value group G of F, and a development function d mapping F isomorphically onto a truncation closed subfield R of the Hahn field K((G)). In Knight and Lange (Proc Lond Math Soc 107:177–197, 2013), the authors conjectured that if \(\prec \) has order type \(\omega \), then all elements of R have length less than \(\omega ^{\omega ^\omega }\), and they gave examples showing that the conjectured bound would be sharp. The current paper has two theorems bounding the lengths of elements of a truncation closed subfield R of a Hahn field K((G)) in terms of the length of a “tc-basis”. Here K is a field that is either real closed or algebraically closed of characteristic 0, and G is a divisible ordered Abelian group. One theorem says that if R has a tc-basis of length at most \(\omega \), then the elements have length less than \(\omega ^{\omega ^\omega }\). This theorem yields the conjecture from Knight and Lange (2013). The other theorem says that if the group G is Archimedean, and R has a tc-basis of length \(\gamma \), where \(\omega \le \gamma < \omega _1\), then the elements of R have length at most \(\omega ^{\omega ^\gamma }\).

Keywords

Newton–Puiseux method Puisseux series Hahn field Generalized power series Truncation closed embedding 

Mathematics Subject Classification

12Y05 12E05 11J61 03C60 

Notes

References

  1. 1.
    Basu, S., Pollack, R., Roy, M.: Algorithms in real algebraic geometry, In: Eisenbud, D., Singer, M.F., Sturmfels, B., Braverman, M., Viray, B. (eds.) Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)Google Scholar
  2. 2.
    Berarducci, A.: Factorization in generalized power series. Trans. Am. Math. Soc. 352, 553–577 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carruth, P.: Arithmetic of ordinals with application to the theory of ordered Abelian groups. Bull. Am. Math. Soc. 48, 262–271 (1942)MathSciNetCrossRefGoogle Scholar
  4. 4.
    De Jongh, D.H.J., Parikh, R.: Well partial orderings and hierarchies. Proc. K. Ned. Akad. Sci. Ser. A 80, 195–207 (1977)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ehrlich, P., van den Dries, L.: Fields of surreal numbers and exponentiation. Fund. Math. 167, 173–188 (2001). (Erratum: Fund. Math., vol. 168(2001), pp. 295–297)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Knight, J.F., Lange, K.: Complexity of structures associated with real closed fields. Proc. Lond. Math. Soc. 107, 177–197 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Maclane, S.: The universality of formal power series fields. Bull. Am. Math. Soc. 45, 888–890 (1939)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mourgues, M.H.: Applications des corps de séries formelles à l’étude des corps réels clos et des corps exponentiels. Ph.D. Thesis, Université de Paris 7 (1993)Google Scholar
  9. 9.
    Mourgues, M.H., Ressayre, J.P.: Every real closed field has an integer part. J. Symb. Logic 58, 641–647 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nesetril, J., Rodl, V.: Mathematics of Ramsey Theory. Springer, Berlin (1990)CrossRefGoogle Scholar
  11. 11.
    Neumann, B.H.: On ordered division rings. Trans. Am. Math. Soc. 66, 202–252 (1949)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Newton, I.: Letter to Oldenburg dated 1676 Oct 24. In: Hall, A.R., Tilling, L. (eds.) The Correspondence of Isaac Newton II. Cambridge University Press, pp. 126–127 (1960)Google Scholar
  13. 13.
    Pohlers, W.: Proof Theory: An Introduction. Springer, Berlin (1980)zbMATHGoogle Scholar
  14. 14.
    Puiseux, V.A.: Recherches sur les fonctions algébriques. J. Math. Pures Appl. 15, 365–480 (1850)Google Scholar
  15. 15.
    Puiseux, V.A.: Nouvelles recherches sur les fonctions algébriques. J. Math. Pures Appl. 16, 228–240 (1851)Google Scholar
  16. 16.
    Peterzil, Y., Starchenko, S.: A note on generalized power series case. unpublished notesGoogle Scholar
  17. 17.
    Shepherdson, J.C.: A non-standard model for the free variable fragment of number theory. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12, 79–86 (1964)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Starchenko, S.: Understanding support of roots. unpublished notesGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsWellesley CollegeWellesleyUSA

Personalised recommendations