Selecta Mathematica

, Volume 24, Issue 5, pp 3927–3972 | Cite as

Indefinite theta series and generalized error functions

  • Sergei Alexandrov
  • Sibasish Banerjee
  • Jan Manschot
  • Boris Pioline


Theta series for lattices with indefinite signature \((n_+,n_-)\) arise in many areas of mathematics including representation theory and enumerative algebraic geometry. Their modular properties are well understood in the Lorentzian case (\(n_+=1\)), but have remained obscure when \(n_+\ge 2\). Using a higher-dimensional generalization of the usual (complementary) error function, discovered in an independent physics project, we construct the modular completion of a class of ‘conformal’ holomorphic theta series (\(n_+=2\)). As an application, we determine the modular properties of a generalized Appell–Lerch sum attached to the lattice \({{\text {A}}}_2\), which arose in the study of rank 3 vector bundles on \(\mathbb {P}^2\). The extension of our method to \(n_+>2\) is outlined.

Mathematics Subject Classification

11F27 11F37 11F16 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



J. M. thanks Kathrin Bringmann, Thomas Creutzig, Robert Osburn, Larry Rolen, Martin Westerholt-Raum, Don Zagier and Sander Zwegers for discussions about the generating functions derived in [30, 31]. B. P. is grateful to Trinity College Dublin for hospitality during part of this work.


  1. 1.
    Alexandrov, S.: Twistor approach to string compactifications: a review. Phys. Rep. 522, 1–57 (2013). arXiv:1111.2892 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexandrov, S., Banerjee, S., Manschot, J., Pioline, B.: Multiple D3-instantons and mock modular forms I. Commun. Math. Phys. 353, 379–411 (2017). arXiv:1605.05945 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alexandrov, S., Banerjee, S., Manschot, J., Pioline, B.: Multiple D3-instantons and mock modular forms II. Commun. Math. Phys. 359, 297–346 (2018). arXiv:1702.0549 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alexandrov, S., Manschot, J., Persson, D., Pioline, B.: Quantum hypermultiplet moduli spaces in N=2 string vacua: a review. In: Proceedings, String-Math 2012, Bonn, Germany, 16–21 July 2012, pp. 181–212 (2013). arXiv:1304.0766
  5. 5.
    Alexandrov, S., Manschot, J., Pioline, B.: D3-instantons, mock theta series and twistors. JHEP 1304, 002 (2013). arXiv:1207.1109 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Appell, P.E.: Sur les fonctions doublement périodique de troisième espèce. Annales scientifiques de l’E.N.S., pp. 9–42 (1886)Google Scholar
  7. 7.
    Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic identities of Ramanujan. Trans. Am. Math. Soc. 343, 35–47 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bringmann, K., Lovejoy, J.: Overpartitions and class numbers of binary quadratic forms. Proc. Natl. Acad. Sci. arXiv:0712.0631
  10. 10.
    Bringmann, K., Manschot, J.: From sheaves on \(\mathbb{P}^2\) to a generalization of the Rademacher expansion. A. J. Math. 135, 1039–1065 (2013). arXiv:1006.0915 CrossRefGoogle Scholar
  11. 11.
    Bringmann, K., Manschot, J., Rolen, L.: Identities for generalized Appell functions and the blow-up formula. Lett. Math. Phys. 106, 1379 (2016). arXiv:1510.00630 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bringmann, K., Rolen, L., Zwegers, S.: On the modularity of certain functions from the Gromov–Witten theory of elliptic orbifolds. R. Soc. Open Sci. 2(15), 150310 (2015). arXiv:1506.07833 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brion, M., Vergne, M.: Arrangement of hyperplanes. I: rational functions and Jeffrey–Kirwan residue. Ann. Sci. Éc. Norm. Supér. (4) 32(5), 715–741 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dabholkar, A., Murthy, S., Zagier, D.: Quantum black holes, wall crossing, and mock modular forms (2012). arXiv:1208.4074 CrossRefGoogle Scholar
  15. 15.
    NIST Digital Library of Mathematical Functions., Release 1.0.10 of 2015-08-07. Online companion to [33]
  16. 16.
    Eguchi, T., Taormina, A.: On the unitary representations of \(N=2\) and \(N=4\) superconformal algebras. Phys. Lett. B 210, 125–132 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms, volume 55 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA (1985)CrossRefGoogle Scholar
  18. 18.
    Funke, J., Kudla, S.: Theta integrals and generalized error functions, II. Preprint arXiv:1708.02969
  19. 19.
    Göttsche, L.: Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces. Commun. Math. Phys. 206, 105 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Göttsche, L., Zagier, D.: Jacobi forms and the structure of Donaldson invariants for \(4\)-manifolds with \(b_+=1\). Sel. Math. (N.S.) 4(1), 69–115 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hecke, E.: Über einen neuen Zusammenhang zwischen elliptischen Modulfunktionen und indefiniten quadratischen Formen. Nachr. Ges. Wiss. Gött. Math.-Phys. Kl. 35–44, 1925 (1925)zbMATHGoogle Scholar
  22. 22.
    Hikami, K., Lovejoy, J.: Torus knots and quantum modular forms. Res. Math. Sci. 2, 15 (2015). arXiv:1409.6243 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215, 631–682 (2001). arXiv:math-ph/0006007 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kac, V.G., Wakimoto, M.: Representations of affine superalgebras and mock theta functions. ArXiv e-prints (2013). arXiv:1308.1261
  25. 25.
    Kudla, S., Millson, J.: The theta correspondence and harmonic forms. I. Math. Ann. 274(3), 353–378 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kudla, S., Millson, J.: The theta correspondence and harmonic forms. II. Math. Ann. 277(2), 267–314 (1987)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kudla, S., Millson, J.: Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Publ. Math. Inst. Hautes Etudes Sci. 71(1), 121–172 (1990)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kudla, S.: Theta integrals and generalized error functions. Manuscr. Math. 155(3–4), 303–333 (2018). arXiv:1608.03534 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lerch, M.: Bemerkungen zur Theorie der elliptischen Funktionen. Jahrb. Fortschr. Math. 24, 442–445 (1892)zbMATHGoogle Scholar
  30. 30.
    Manschot, J.: The Betti numbers of the moduli space of stable sheaves of rank 3 on \(\mathbb{P}^2\). Lett. Math. Phys. 98, 65 (2011). arXiv:1009.1775 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Manschot, J.: Sheaves on \(\mathbb{P}^2\) and generalized Appell functions. Adv. Theor. Math. Phys. 21, 655 (2017). arXiv:1407.7785 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Manschot, J.: Vafa–Witten theory and iterated integrals of modular forms. arXiv:1709.10098 [hep-th]
  33. 33.
    Mortenson, E.T.: A double-sum Kronecker type identity (2016). arXiv:1601.01913
  34. 34.
    Nazaroglu, C.: \( r \)-Tuple error functions and indefinite theta series of higher-depth. Preprint arXiv:1609.01224
  35. 35.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY (2010) Print companion to [15]Google Scholar
  36. 36.
    Polishchuk, A.: M. P. Appell’s function and vector bundles of rank 2 on elliptic curve. Ramanujan J. 5, 111–128 (2001). arXiv:math/9810084 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Toda, Y.: Generalized Donaldson–Thomas invariants on the local projective plane. J. Differ. Geom. 106, 341–369 (2017). arXiv:1405.3366 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Vafa, C., Witten, E.: A strong coupling test of S duality. Nucl. Phys. B 431, 3–77 (1994). arXiv:hep-th/9408074 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Vignéras, M.-F.: Séries thêta des formes quadratiques indéfinies. Springer Lecture Notes, vol. 627, pp. 227–239 Springer, Berlin, Heidelberg (1977)Google Scholar
  40. 40.
    Westerholt-Raum, M.: H-Harmonic Maass-Jacobi forms of degree 1: the analytic theory of some indefinite theta series. Res. Math. Sci. 2, 12 (2015). arXiv:1207.5603 MathSciNetCrossRefGoogle Scholar
  41. 41.
    Westerholt-Raum, M.: Indefinite theta series on tetrahedral cones. Preprint arXiv:1608.08874
  42. 42.
    Yoshioka, K.: The Betti numbers of the moduli space of stable sheaves of rank 2 on \(\mathbb{P}^2\). J. Reine Angew. Math. 453, 193–220 (1994)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zagier, D.: Nombres de classes et formes modulaires de poids 3/2. C. R. Acad. Sci. Paris 281, 883–886 (1975)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Zagier, D.: Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). Astérisque (326):Exp. No. 986, vii–viii, 143–164 (2010) (2009. Séminaire Bourbaki. Vol. 2007/2008)Google Scholar
  45. 45.
    Zwegers, S.: Mock theta functions. Ph.D. dissertation, Utrecht University (2002)Google Scholar
  46. 46.
    Zwegers, S.: On two fifth order mock theta functions. Ramanujan J. 20(2), 207–214 (2009)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zwegers, S.: Multivariable Appell functions. Preprint (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sergei Alexandrov
    • 1
  • Sibasish Banerjee
    • 2
  • Jan Manschot
    • 3
  • Boris Pioline
    • 4
    • 5
    • 6
  1. 1.Laboratoire Charles Coulomb (L2C), UMR 5221 CNRSUniversité de MontpellierMontpellierFrance
  2. 2.IPhT, CEA, SaclayGif-sur-YvetteFrance
  3. 3.School of MathematicsTrinity CollegeDublin 2Ireland
  4. 4.TH Department, Case C01600CERNGeneva 23Switzerland
  5. 5.Sorbonne Université, LPTHE, UMR 7589Campus Pierre et Marie CurieParisFrance
  6. 6.CNRS, LPTHE, UMR 7589ParisFrance

Personalised recommendations