Selecta Mathematica

, Volume 24, Issue 5, pp 4711–4748 | Cite as

Quantum character varieties and braided module categories

  • David Ben-Zvi
  • Adrien Brochier
  • David JordanEmail author
Open Access


We compute quantum character varieties of arbitrary closed surfaces with boundaries and marked points. These are categorical invariants \(\int _S{\mathcal {A}}\) of a surface S, determined by the choice of a braided tensor category \({\mathcal {A}}\), and computed via factorization homology. We identify the algebraic data governing marked points and boundary components with the notion of a braided module category for \({\mathcal {A}}\), and we describe braided module categories with a generator in terms of certain explicit algebra homomorphisms called quantum moment maps. We then show that the quantum character variety of a decorated surface is obtained from that of the corresponding punctured surface as a quantum Hamiltonian reduction. Characters of braided \({\mathcal {A}}\)-modules are objects of the torus category \(\int _{T^2}{\mathcal {A}}\). We initiate a theory of character sheaves for quantum groups by identifying the torus integral of \({\mathcal {A}}={\text {Rep}}_{q}G\) with the category \({\mathcal {D}}_q(G/G)\)-mod of equivariant quantum \({\mathcal {D}}\)-modules. When \(G=GL_n\), we relate the mirabolic version of this category to the representations of the spherical double affine Hecke algebra \({\mathbb {SH}}_{q,t}\).

Mathematics Subject Classification

17B37 16T99 


  1. 1.
    Ayala, D., Francis, J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ayala, D., Francis, J., Tanaka, H.: Factorization homology of stratified spaces. Selecta Mathematica 23(1), 293–362 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48(3), 445–495 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bellamy, G., Ginzburg, V.: Hamiltonian reduction and nearby cycles for mirabolic D-modules. Adv. Math. 269, 71–161 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brochier, A., Jordan, D.: Fourier transform for quantum \(D\)-modules via the punctured torus mapping class group. Quantum Topol. 8(2), 361–379 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balagovic, M., Jordan, D.: The quantum Harish-Chandra isomorphism for \({GL}_2\). arXiv:1603.09218 (2016)
  7. 7.
    Brochier, A.: A Kohno–Drinfeld theorem for the monodromy of cyclotomic KZ connections. Commun. Math. Phys. 311, 55–96 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brochier, A.: Cyclotomic associators and finite type invariants for tangles in the solid torus. Algebr. Geom. Topol. 13, 3365–3409 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bruguières, A., Virelizier, A.: The double of a Hopf monad. arXiv preprint arXiv:0812.2443 (2008)
  10. 10.
    Ben-Zvi, D., Brochier, A., Jordan, D.: Integrating quantum groups over surfaces. J. Topology (2015) arXiv:1501.04652 (To appear)
  11. 11.
    Ben-Zvi, D., Nadler, D.: The character theory of a complex group. arXiv preprint arXiv:0904.1247 (2009)
  12. 12.
    Ben-Zvi, D., Nadler, D.: Loop spaces and representations. Duke Math. J. 162(9), 1587–1619 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ben-Zvi, D., Nadler, D.: Betti geometric Langlands. In: Proceedings of Symposia in Pure Mathematics, vol. 97.2, pp. 3–41. AMS (2018)Google Scholar
  14. 14.
    Cherednik, I.: DAHA and Verlinde algebras. In: Quantum Theory and Symmetries, pp. 53–64. World Scientific Publishing, Hackensack, NJ (2004)Google Scholar
  15. 15.
    Cherednik, I.: Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series, vol. 319. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  16. 16.
    Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  17. 17.
    Donin, J., Kulish, P.P., Mudrov, A.I.: On a universal solution to the reflection equation. Lett. Math. Phys. 63(3), 179–194 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Donin, J., Mudrov, A.: Explicit equivariant quantization on coadjoint orbits of \({GL}(n, {\mathbb{C}})\). Lett. Math. Phys. 62(1), 17–32 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Donin, J., Mudrov, A.: Quantum coadjoint orbits of \({GL}(n)\) and generalized Verma modules. Lett. Math. Phys. 67(3), 167–184 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Donin, J., Mudrov, A.: Quantum groupoids and dynamical categories. J. Algebra 296(2), 348–384 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Douglas, C.L., Schommer-Pries, C., Snyder, N.: Dualizable tensor categories. arXiv:1312.7188 (2013)
  22. 22.
    Etingof, P., Geer, N.: Monodromy of trigonometric KZ equations. Int. Math. Res. Not. IMRN 24, 15 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Enriquez, B.: Quasi-reflection algebras and cyclotomic associators. Sel. Math. New Ser. 13, 391–463 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352(10), 4877–4888 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Finkelberg, M., Ginzburg, V.: On mirabolic D-modules. Int. Math. Res. Not. 2010(15), 2947–2986 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Freed, D.S., Hopkins, M.J., Teleman, C.: Loop groups and twisted \({K}\)-theory III. Ann. Math. 174(2), 947–1007 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fehér, L., Klimčík, C.: Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction. Nucl. Phys. B 860(3), 464–515 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fehér, L., Klimčík, C.: The Ruijsenaars Self-Duality Map as a Mapping Class Symplectomorphism, pp. 423–437. Springer, Tokyo (2013)zbMATHGoogle Scholar
  29. 29.
    Fehér, L., Kluck, T.: New compact forms of the trigonometric Ruijsenaars–Schneider system. Nucl. Phys. B 882, 97–127 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the \(r\)-matrix. In: Moscow Seminar in Mathematical Physics, vol. 191 of Am. Math. Soc. Transl. Ser. 2, pp. 67–86. Am. Math. Soc., Providence, RI (1999)Google Scholar
  31. 31.
    Francis, J.: The tangent complex and Hochschild cohomology of \({E}_n\)-rings. Compos. Math. 149(3), 430–480 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Fuchs, J., Schaumann, G., Schweigert, S.: A trace for bimodule categories. arXiv:1412.6968 (2014)
  33. 33.
    Gaitsgory, D.: Quantum Langlands correspondence. arXiv preprint arXiv:1601.05279 (2016)
  34. 34.
    Gan, W.L., Ginzburg, V.: Almost-commuting variety, D-modules, and Cherednik algebras. Int. Math. Res. Pap. (2006)Google Scholar
  35. 35.
    Ginot, G.: Notes on factorization algebras, factorization homology and applications. In: Mathematical aspects of quantum field theories, pp. 429–552. Springer (2015)Google Scholar
  36. 36.
    Gorsky, A., Nekrasov, N.: Relativistic Calogero–Moser model as gauged WZW theory. Nucl. Phys. B 436(3), 582–608 (1995)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Gunningham, S.: A generalized Springer decomposition for D-modules on a reductive Lie algebra. arXiv preprint arXiv:1510.02452 (2015)
  38. 38.
    Jordan, D.: Quantized multiplicative quiver varieties. Adv. Math. 250, 420–466 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kolb, S., Stokman, J.: Reflection equation algebras, coideal subalgebras, and their centres. Sel. Math. 15(4), 621–664 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lurie, J.: Higher algebra.
  41. 41.
    Lurie, J.: On the classification of topological field theories. Curr. Dev. Math. 2008, 129–280 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Nevins, T.: Mirabolic Langlands duality and the quantum Calogero–Moser system. Transform. Groups 14(4), 931–983 (2009)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Oblomkov, A.: Double affine Hecke algebras and Calogero–Moser spaces. Represent. Theory Am. Math. Soc. 8(10), 243–266 (2004)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ruijsenaars, S., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170(2), 370–405 (1986)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Voronov, A.A.: The Swiss-cheese operad. In: Homotopy invariant algebraic structures (Baltimore, MD, 1998), vol. 239 of Contemp. Math., pp. 365–373. Am. Math. Soc., Providence, RI (1999)Google Scholar
  46. 46.
    Varagnolo, M., Vasserot, E.: Double affine Hecke algebras at roots of unity. Represent. Theory 14, 510–600 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TexasAustinUSA
  2. 2.MPIMBonnGermany
  3. 3.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations