Advertisement

Selecta Mathematica

, Volume 24, Issue 5, pp 4577–4615 | Cite as

A Fourier transform for the quantum Toda lattice

  • Gus Lonergan
Article

Abstract

We answer a question of V. Drinfeld by constructing an ‘algebraic Fourier transform’ for the quantum Toda lattice of a complex reductive algebraic group G, which extends the classical ‘algebraic Fourier transform’ for its subalgebra \(D(T)^W\) of Weyl group invariant differential operators on a maximal torus. The proof is contained in Sect. 2 and relies on a result of Bezrukavnikov–Finkelberg realizing the quantum Toda lattice as the equivariant homology of the dual affine Grassmannian; the Fourier transform boils down to nothing more than the duality between homology and cohomology. In Sect. 3, we compare our result with a related result of V. Ginzburg, and explain the apparent discrepancy by showing that W-equivariant quasicoherent sheaves on \({{\mathrm{\mathfrak {t}}}}^*\) descend to \({{\mathrm{\mathfrak {t}}}}^*//W\) if they descend to \({{\mathrm{\mathfrak {t}}}}^*/\langle s_i\rangle \) for every simple reflection \(s_i\) of W.

Mathematics Subject Classification

17B80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezrukavnikov, R., Finkelberg, M.: Equivariant satake category and Kostant–Whittaker reduction. Mosc. Math. J. 8(1), 39–72 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bezrukavnikov, R., Mirković, I.: Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution. Ann. Math. 178(2), 835–919 (2013). With an appendix by Eric SommersMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77, 778–782 (1955)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Demazure, M., Gabriel, P.: Groupes algebriques. Tome I: Géométrie algebrique, généralités, groupes commutatifs. Masson & Cie, Editeur, Paris; North-Holland Publishing Co., Amsterdam (1970)Google Scholar
  5. 5.
    Ginzburg, V.: Nil Hecke Algebras and Whittaker D-Modules. arXiv:1706.06751 (2017)
  6. 6.
    Ginzburg, V.: Perverse sheaves on a Loop group and Langlands’ duality. arXiv:alg-geom/9511007 (1995)
  7. 7.
    Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    James, E.: Humphreys, Reflection Groups and Coxeter Groups. Volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)Google Scholar
  9. 9.
    Kostant, B.: Quantization and representation theory, in representation theory of Lie groups. Lond. Math. Soc. Lect. Note Ser. 34, 287–316 (1979)Google Scholar
  10. 10.
    Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser, Boston (2002)CrossRefGoogle Scholar
  11. 11.
    Lusztig, G.: Singularities, character formulas, and a q-analogue for weight multiplicities. Analyse et topologie sur les espaces singuliers, Astérisque 101(102), 208–229 (1982)Google Scholar
  12. 12.
    Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations