Homological mirror symmetry for hypersurface cusp singularities
- 116 Downloads
Abstract
We study versions of homological mirror symmetry for hypersurface cusp singularities and the three hypersurface simple elliptic singularities. We show that the Milnor fibres of each of these carries a distinguished Lefschetz fibration; its derived directed Fukaya category is equivalent to the derived category of coherent sheaves on a smooth rational surface \(Y_{p,q,r}\). By using localization techniques on both sides, we get an isomorphism between the derived wrapped Fukaya category of the Milnor fibre and the derived category of coherent sheaves on a quasi-projective surface given by deleting an anti-canonical divisor D from \(Y_{p,q,r}\). In the cusp case, the pair \((Y_{p,q,r}, D)\) is naturally associated to the dual cusp singularity, tying into Gross, Hacking and Keel’s proof of Looijenga’s conjecture.
Mathematics Subject Classification
53D37 (primary) 14J33 (secondary)References
- 1.Abouzaid, M., Seidel, P.: Lefschetz fibration methods in wrapped Floer cohomology (in preparation) Google Scholar
- 2.Abouzaid, M., Smith, I.: Khovanov homology from Floer cohomology. arXiv:1504.01230
- 3.Abouzaid, M.: A cotangent fibre generates the Fukaya category. Adv. Math. 228(2), 894–939 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 4.Abouzaid, M., Auroux, D., Efimov, A., Katzarkov, L., Orlov, D.: Homological mirror symmetry for punctured spheres. J. Am. Math. Soc. 26(4), 1051–1083 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 5.Abouzaid, M., Auroux, D., Katzarkov, L.: Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. arXiv:1205.0053
- 6.Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 7.A’Campo, N.: Real deformations and complex topology of plane curve singularities. Ann. Fac. Sci. Toulouse Math. 8(1), 5–23 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 8.Akbulut, S., Arikan, M.F.: Stabilizations via Lefschetz Fibrations and Exact Open Books. arXiv:1112.0519
- 9.Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory. I. Springer, Berlin (1998). Translated from the 1988 Russian original by A. Iacob, Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [ıt Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993; MR1230637 (94b:58018)]Google Scholar
- 10.Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Proceedings of the International Congress of Mathematicians, vol. II (Beijing, 2002), pp. 47–56. Higher Ed. Press, Beijing (2002)Google Scholar
- 11.Burban, I., Drozd, Y.: Coherent sheaves on rational curves with simple double points and transversal intersections. Duke Math. J. 121(2), 189–229 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 12.Carl, M., Pumperla, M., Siebert, S.: A tropical view on Landau–Ginzburg models. http://www.math.uni-hamburg.de/home/siebert/research/research.html
- 13.Chan, K., Ueda, K.: Dual torus fibrations and homological mirror symmetry for \(A_n\)-singlarities. Commun. Number Theory Phys. 7(2), 361–396 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 14.Drozd, Y.A., Greuel, G.-M.: Tame and wild projective curves and classification of vector bundles. J. Algebra 246(1), 1–54 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 15.Etgü, T., Lekili, Y.: Koszul duality patterns in Floer theory. arXiv:1502.07922
- 16.Giroux, E., Pardon, J.: Existence of Lefschetz fibrations on Stein and Weinstein domains. arXiv:1411.6176
- 17.Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi–Yau surfaces I. arXiv:1106.4977
- 18.Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi–Yau surfaces I. arXiv:1106.4977v1
- 19.Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebr. Geom. 2(2), 137–175 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 20.Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data. I. J. Differ. Geom. 72(2), 169–338 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 21.Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data. II. J. Algebr. Geom. 19(4), 679–780 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 22.Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. Math. 174(3), 1301–1428 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 23.Huybrechts, D.: Fourier–Mukai transforms in algebraic geometry. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)Google Scholar
- 24.Keating, A.: Lagrangian tori in four-dimensional Milnor fibres. arXiv:1405.0744
- 25.Kontsevich, M.: Lectures at ENS Paris, Spring (1998) (Unpublished) Google Scholar
- 26.Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)Google Scholar
- 27.Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 203–263. World science publisher, River Edge (2001)Google Scholar
- 28.Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces. The Unity of Mathematics. Progress in mathematics, vol. 244, pp. 321–385. Birkhäuser Boston, Boston (2006)Google Scholar
- 29.Lekili, Y., Perutz, T.: Arithmetic mirror symmetry for the 2-torus. arXiv:1211.4632
- 30.Lekili, Y., Polishchuk, A.: Arithmetic mirror symmetry for genus 1 curves with \(n\) marked points. arXiv:1601.06141
- 31.Lekili, Y., Perutz, T.: Fukaya categories of the torus and Dehn surgery. Proc. Natl. Acad. Sci. USA 108(20), 8106–8113 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 32.Looijenga, E.: Rational surfaces with an anticanonical cycle. Ann. Math. 114(2), 267–322 (1981)MathSciNetCrossRefMATHGoogle Scholar
- 33.Lunts, V.A., Orlov, D.O.: Uniqueness of enhancement for triangulated categories. J. Am. Math. Soc. 23(3), 853–908 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 34.Orlov, D.O.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 852–862 (1992)MATHGoogle Scholar
- 35.Saito, K.: Einfach-elliptische Singularitäten. Invent. Math. 23, 289–325 (1974)MathSciNetCrossRefMATHGoogle Scholar
- 36.Seidel, P.: Homological mirror symmetry for the quartic surface. Mem. Am. Math. Soc. 236(1116), vii+129 (2015)Google Scholar
- 37.Seidel, P.: Fukaya \(A_\infty \) structures associated to Lefschetz fibrations. II. arXiv:1404.1352
- 38.Seidel, P.: Lecture notes on Categorical Dynamics and Symplectic Topology. http://www-math.mit.edu/~seidel/
- 39.Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128(1), 103–149 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 40.Seidel, P.: More about vanishing cycles and mutation. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 429–465. World science publisher, River Edge (2001)Google Scholar
- 41.Seidel, P.: Vanishing cycles and mutation. In: European Congress of Mathematics, vol. II (Barcelona, 2000). Progress in mathematics, vol. 202, pp. 65–85. Birkhäuser, Basel (2001)Google Scholar
- 42.Seidel, P.: \(A_\infty \)-subalgebras and natural transformations. Homol. Homotopy Appl. 10(2), 83–114 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 43.Seidel, P: Fukaya categories and Picard-Lefschetz theory. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)Google Scholar
- 44.Seidel, P.: Fukaya \(A_\infty \)-structures associated to Lefschetz fibrations. I. J. Symplectic Geom. 10(3), 325–388 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 45.Shende, V., Treumann, D., Williams, H.: On the combinatorics of exact Lagrangian surfaces. arXiv:1603.07449
- 46.Symington, M.: Four dimensions from two in symplectic topology. Topology and Geometry of Manifolds (Athens. GA, 2001). Proceedings of symposia in pure mathematics, vol. 71, pp. 153–208. American mathematical society, Providence (2003)Google Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.