Advertisement

Null controllability for a class of degenerate parabolic equations with the gradient terms

  • Runmei DuEmail author
Article
  • 8 Downloads

Abstract

This paper concerns a class of control systems governed by degenerate parabolic equations with the gradient terms, which are independent of the diffusion terms. The Carleman estimates and the observability inequalities for the equations are established when the degeneracy is relatively weak. Subsequently, it is proved that the control systems are null controllable. Moreover, the result can be generalized to the semilinear equations by using the fixed point theorem.

Keywords

Carleman estimate Null controllability Degeneracy 

Mathematics Subject Classification

93B05 93C20 35K65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Alabau-Boussouira, F., Cannarsa, P. and Fragnelli, G., Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6(2)(2006), 161–204.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barbu, V., Controllability of parabolic and Navier-Stokes equations, Sci. Math. Jpn., 56(1)(2002), 143–211.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Black, F. and Scholes M., The pricing of options and corporate liabilities, J. Political Economy, 81 (1973), 637–659.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cannarsa, P. and Fragnelli, G., Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 2006(136)(2006), 1–20.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cannarsa, P., Fragnelli, G. and Rocchetti, D., Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2(4)(2007), 695–715.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cannarsa, P., Fragnelli, G. and Rocchetti, D., Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8(4)(2008), 583–616.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cannarsa, P., Fragnelli, G. and Vancostenoble, J., Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., 320(2)(2006), 804–818.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cannarsa, P., Martinez, P. and Vancostenoble, J., Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3(4)(2004), 607–635.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cannarsa, P., Martinez, P. and Vancostenoble J., Null controllability of degenerate heat equations, Adv. Differential Equations, 10(2)(2005), 153–190.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cannarsa, P., Martinez, P. and Vancostenoble, J., Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47(1)(2008), 1–19.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, R., Approximate controllability of a class of semilinear degenerate systems with boundary control, J.Differential Equations, 256(9)(2014), 3141–3165.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Du, R., Wang, C. and Zhou, Q., Approximate Controllability of a Semilinear System Involving a Fully Nonlinear Gradient Term, Appl Math Optim, 70(2014), 165–183.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Du, R. and Wang, C., Null controllability of a class of systems governed by coupled degenerate equations, Applied Mathematics Letters , 26(2013) 113–119.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fernández-Cara, E. and Zuazua, E., The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5(2000), 465–514.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fernández-Cara, E. and Zuazua, E., Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 17(5)(2000), 583–616.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Flores, C. and Teresa, L., Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris, 348(2010), 391–396.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fursikov, A. V. and Imanuvilov, O. Y., Controllability of evolution equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996.Google Scholar
  18. 18.
    Gao, H., Hou, X. and Pavel, N. H., Optimal control and controllability problems for a class of nonlinear degenerate diffusion equations, Panamer. Math. J., 13(1)(2003), 103–126.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Imanuvilov, Oleg Yu. and Yamamoto, Masahiro,Carleman Inequalities for Parabolic Equations in Sobolev Spaces of Negative Order and Exact Controllability for Semilinear Parabolic Equations, Publ. RIMS, Kyoto Univ., 39(2003), 227–274.Google Scholar
  20. 20.
    Lin, P., Gao, H. and Liu, X., Some results on controllability of a nonlinear degenerate parabolic system by bilinear control, J. Math. Anal. Appl., 326(2)(2007), 1149–1160.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, X. and Gao, H., Controllability of a class of Newtonian filtration equations with control and state constraints, SIAM J. Control Optim., 46(6)(2007), 2256–2279.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Martinez, P., Raymond, J. P. and Vancostenoble, J., Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42(2)(2003), 709–728.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Martinez, P. and Vancostenoble, J., Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6(2)(2006), 325–362.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    North, G. R., Howard, L., Pollard D. and Wielicki B., Variational formulation of Budyko-Sellers climate models, J. Atmos. Sci., 36(1979), 255–259.CrossRefGoogle Scholar
  25. 25.
    Sakthivel, R., Ganesh, R., Ren, Y. and Anthoni, S.M., Approximate controllability of nonlinear fractional dynamical systems, Commun Nonlinear Sci Number Simulat, 18(12)(2013), 3498–3508.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sakthivel, R., Ren, Y. and Mahmudov, N. I., Approximate controllability of second-order stochastic differential equations with impulsive effects, Modern Physics Letters B , 24(14)(2010), 1559.Google Scholar
  27. 27.
    Wang, C., Approximate controllability of a class of degenerate systems, Appl. Math. Comput., 203(1)(2008), 447–456.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Wang, C., Approximate controllability of a class of semilinear systems with boundary degeneracy, J. Evol. Equ., 10(1)(2010),163–193.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, C., Du, R., Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms, SIAM J. Control Optim., 52(3)(2014), 1457–1480.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, C., Zhou, Y. , Du, R. and Liu, Q., Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms, Discrete Contin. Dyn. Syst. Ser. B., 23(10)(2018), 4207–4222.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Basic ScienceChangchun University of TechnologyChangchunPeople’s Republic of China

Personalised recommendations