Journal of Evolution Equations

, Volume 18, Issue 4, pp 1787–1818 | Cite as

Local well-posedness for relaxational fluid vesicle dynamics

  • Matthias KöhneEmail author
  • Daniel Lengeler


We prove the local well-posedness of a basic model for relaxational fluid vesicle dynamics by a contraction mapping argument. Our approach is based on the maximal \(L_p\)-regularity of the model’s linearization.


Stokes equations Fluid dynamics Biological membrane Canham–Helfrich energy Lipid bilayer Local well-posedness Maximal regularity 

Mathematics Subject Classification

Primary 35Q92 Secondary 35A01 35A02 35Q74 35K25 76D27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Amann. Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory.Google Scholar
  2. 2.
    R. Aris. Vectors, tensors and the basic equations of fluid mechanics. Dover Publications, 1990.Google Scholar
  3. 3.
    P. B. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26(1):61–81, 1970.CrossRefGoogle Scholar
  4. 4.
    C. H. A. Cheng, D. Coutand, and S. Shkoller. Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal., 39(3):742–800 (electronic), 2007.MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Denk, J. Saal, and J. Seiler. Inhomogeneous Symbols, the Newton Polygon, and Maximal \({L}_p\)-Regularity. Russian J. Math. Phys., 15(2):171–192, 2008.MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. A. Evans. Bending resistance and chemically induced moments in membrane bilayers. Biophysical journal, 14(12):923–931, 1974.CrossRefGoogle Scholar
  7. 7.
    L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.Google Scholar
  8. 8.
    G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Volume 1: Linearized Steady Problems. Springer, 1994.Google Scholar
  9. 9.
    W. Helfrich. Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie. Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie, 28(11):693–703, 1973.CrossRefGoogle Scholar
  10. 10.
    N. J. Kalton and L. Weis. The \({H}^\infty \)-Calculus and Sums of Closed Operators. Math. Ann., 321:319–345, 2001.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Kohsaka and T. Nagasawa. On the existence of solutions of the helfrich flow and its center manifold near spheres. Differential and Integral Equations, 19(2):121–142, 2006.MathSciNetzbMATHGoogle Scholar
  12. 12.
    L. D. Kudrjavcev. Imbedding Theorem for a Class of Functions Defined on the Entire Space or on a Halfspace. I. Amer. Math. Soc. Transl., 74:199–225, 1968.Google Scholar
  13. 13.
    L. D. Kudrjavcev. Imbedding Theorem for a Class of Functions Defined on the Entire Space or on a Halfspace. II. Amer. Math. Soc. Transl., 74:227–260, 1968.Google Scholar
  14. 14.
    D. Lengeler. Globale Existenz für die Interaktion eines Navier-Stokes-Fluids mit einer linear elastischen Schale. PhD thesis, University of Freiburg, 2011.Google Scholar
  15. 15.
    D. Lengeler. Asymptotic stability of local helfrich minimizers. Preprint: arXiv:1510.01521, 2015.
  16. 16.
    D. Lengeler. On a Stokes-type system arising in fluid vesicle dynamics. Preprint: arXiv:1506.08991, 2015.
  17. 17.
    J. McCoy and G. Wheeler. Finite time singularities for the locally constrained willmore flow of surfaces. Preprint: arXiv:1201.4541, 2012.
  18. 18.
    J. McCoy and G. Wheeler. A classification theorem for Helfrich surfaces. Math. Ann., 357(4):1485–1508, 2013.MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Meyer. Well-posedness of a moving sharp-interface problem with boussinesq-scriven surface viscosities. PhD thesis, University of Halle, 2015.Google Scholar
  20. 20.
    T. Nagasawa and T. Yi. Local existence and uniqueness for the n-dimensional helfrich flow as a projected gradient flow. Hokkaido Mathematical Journal, 41(2):209–226, 2012.MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Prüss and G. Simonett. On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound., 12(3):311–345, 2010.MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Prüss and G. Simonett. Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity. In Parabolic problems, volume 80 of Progr. Nonlinear Differential Equations Appl., pages 507–540. Birkhäuser/Springer Basel AG, Basel, 2011.Google Scholar
  23. 23.
    L. E. Scriven. Dynamics of a fluid interface. Chemical Engineering Science, 12(2):98–108, 1960.CrossRefGoogle Scholar
  24. 24.
    U. Seifert. Configurations of fluid membranes and vesicles. Advances in physics, 46(1):13–137, 1997.CrossRefGoogle Scholar
  25. 25.
    T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis.Google Scholar
  26. 26.
    H. Triebel. Theory of Function Spaces I. Birkhäuser, 1983.Google Scholar
  27. 27.
    H. Triebel. Theory of Function Spaces II. Birkhäuser, 1992.Google Scholar
  28. 28.
    W. Wang, P. Zhang, and Z. Zhang. Well-posedness of hydrodynamics on the moving elastic surface. Arch. Ration. Mech. Anal., 206(3):953–995, 2012.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations