Journal of Evolution Equations

, Volume 18, Issue 4, pp 1721–1744 | Cite as

Sharp growth rates for semigroups using resolvent bounds

  • Jan Rozendaal
  • Mark VeraarEmail author
Open Access


We study growth rates for strongly continuous semigroups. We prove that a growth rate for the resolvent on imaginary lines implies a corresponding growth rate for the semigroup if either the underlying space is a Hilbert space, or the semigroup is asymptotically analytic, or if the semigroup is positive and the underlying space is an \(L^{p}\)-space or a space of continuous functions. We also prove variations of the main results on fractional domains; these are valid on more general Banach spaces. In the second part of the article, we apply our main theorem to prove optimality in a classical example by Renardy of a perturbed wave equation which exhibits unusual spectral behavior.


\(C_{0}\)-semigroup Polynomial growth Positive semigroup Fourier multiplier Kreiss condition Perturbed wave equation 

Mathematics Subject Classification

Primary 47D06 Secondary 34D05 35B40 42B15 



The authors would like to thank Yuri Tomilov for helpful comments, and the anonymous referee for carefully reading the manuscript.


  1. 1.
    W. Arendt, C. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2011.Google Scholar
  2. 2.
    C. Batty, M. Blake, and S. Srivastava. A non-analytic growth bound for Laplace transforms and semigroups of operators. Integral Equations Operator Theory, 45(2):125–154, 2003.MathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Batty, M. Haase, and J. Mubeen. The holomorphic functional calculus approach to operator semigroups. Acta Sci. Math. (Szeged), 79(1-2):289–323, 2013.MathSciNetzbMATHGoogle Scholar
  4. 4.
    C. Batty and S. Srivastava. The non-analytic growth bound of a \(C_0\)-semigroup and inhomogeneous Cauchy problems. J. Differential Equations, 194(2):300–327, 2003.MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Blake. Asymptotically Norm-Continuous Semigroups of Operators. PhD thesis, University of Oxford, 1999.Google Scholar
  6. 6.
    M. Boukdir. On the growth of semigroups and perturbations. Semigroup Forum, 91(2):338–346, 2015.MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. B. Davies. Semigroup growth bounds. J. Operator Theory, 53(2):225–249, 2005.MathSciNetzbMATHGoogle Scholar
  8. 8.
    E. B. Davies. Linear operators and their spectra, volume 106 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.Google Scholar
  9. 9.
    E. B. Davies and B. Simon. \(L^p\) norms of noncritical Schrödinger semigroups. J. Funct. Anal., 102(1):95–115, 1991.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Diestel, H. Jarchow, and A. Tonge. Absolutely summing operators, volume 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.Google Scholar
  11. 11.
    J. Dieudonné. Foundations of modern analysis. Academic Press, New York-London, 1969. Enlarged and corrected printing, Pure and Applied Mathematics, Vol. 10-I.Google Scholar
  12. 12.
    T. Eisner. Stability of operators and operator semigroups, volume 209 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2010.Google Scholar
  13. 13.
    T. Eisner and H. Zwart. Continuous-time Kreiss resolvent condition on infinite-dimensional spaces. Math. Comp., 75(256):1971–1985, 2006.MathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Eisner and H. Zwart. A note on polynomially growing \(C_0\)-semigroups. Semigroup Forum, 75(2):438–445, 2007.MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Eisner and H. Zwart. The growth of a \(C_0\)-semigroup characterised by its cogenerator. J. Evol. Equ., 8(4):749–764, 2008.MathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.Google Scholar
  17. 17.
    J. Faupin and J. Fröhlich. Asymptotic completeness in dissipative scattering theory. Online at, 2017.
  18. 18.
    J. A. Goldstein and M. Wacker. The energy space and norm growth for abstract wave equations. Appl. Math. Lett., 16(5):767–772, 2003.MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Grigor’yan. Heat kernels on weighted manifolds and applications. In The ubiquitous heat kernel, volume 398 of Contemp. Math., pages 93–191. Amer. Math. Soc., Providence, RI, 2006.Google Scholar
  20. 20.
    M. Haase. The functional calculus for sectorial operators, volume 169 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2006.Google Scholar
  21. 21.
    M. Hieber. Operator valued Fourier multipliers. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl., pages 363–380. Birkhäuser, Basel, 1999.Google Scholar
  22. 22.
    T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach Spaces. Volume I: Martingales and Littlewood-Paley Theory, volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, 2016.Google Scholar
  23. 23.
    T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach Spaces. Volume II: Probabilistic Methods and Operator Theory., volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, 2017.Google Scholar
  24. 24.
    M. Kaashoek and S. Verduyn Lunel. An integrability condition on the resolvent for hyperbolicity of the semigroup. J. Differential Equations, 112(2):374–406, 1994.MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.V. Kiselev. On the resolvent estimates for the generators of strongly continuous groups in the Hilbert spaces. In Operator methods in ordinary and partial differential equations (Stockholm, 2000), volume 132 of Oper. Theory Adv. Appl., pages 253–266. Birkhäuser, Basel, 2002.Google Scholar
  26. 26.
    J. Kraaijevanger. Two counterexamples related to the Kreiss matrix theorem. BIT, 34(1):113–119, 1994.MathSciNetCrossRefGoogle Scholar
  27. 27.
    H.-O. Kreiss. Über Matrizen die beschränkte Halbgruppen erzeugen. Math. Scand., 7:71–80, 1959.MathSciNetCrossRefGoogle Scholar
  28. 28.
    P. C. Kunstmann and L. Weis. Maximal \(L_p\)-Regularity for Parabolic Equations, Fourier Multiplier Theorems and \(H^\infty \)-functional Calculus. In Functional Analytic Methods for Evolution Equations (Levico Terme 2001), volume 1855 of Lecture Notes in Math., pages 65–312. Springer, Berlin, 2004.Google Scholar
  29. 29.
    S. Kwapień. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math., 44:583–595, 1972. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI.Google Scholar
  30. 30.
    Y. Latushkin and R. Shvydkoy. Hyperbolicity of semigroups and Fourier multipliers. In Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), volume 129 of Oper. Theory Adv. Appl., pages 341–363. Birkhäuser, Basel, 2001.Google Scholar
  31. 31.
    R. LeVeque and L. Trefethen. On the resolvent condition in the Kreiss matrix theorem. BIT, 24(4):584–591, 1984.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Y.-C. Li, R. Sato, and S.-Y. Shaw. Boundedness and growth orders of means of discrete and continuous semigroups of operators. Studia Math., 187(1):1–35, 2008.MathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. II, volume 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin-New York, 1979. Function spaces.Google Scholar
  34. 34.
    M. Malejki. \(C_0\)-groups with polynomial growth. Semigroup Forum, 63(3):305–320, 2001.MathSciNetCrossRefGoogle Scholar
  35. 35.
    N. Nikolski. Sublinear dimension growth in the Kreiss matrix theorem. Algebra i Analiz, 25(3):3–51, 2013.MathSciNetGoogle Scholar
  36. 36.
    L. Paunonen. Polynomial stability of semigroups generated by operator matrices. J. Evol. Equ., 14(4-5):885–911, 2014.MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Renardy. On the linear stability of hyperbolic PDEs and viscoelastic flows. Z. Angew. Math. Phys., 45(6):854–865, 1994.MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Rozendaal and M. Veraar. Fourier multiplier theorems on Besov spaces under type and cotype conditions. Banach J. Math. Anal., 11(4):713–743, 2017.MathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Rozendaal and M. Veraar. Stability theory for semigroups using \(({L}^{p},{L}^{q})\) Fourier multipliers. Online at, submitted, 2017.
  40. 40.
    J. Rozendaal and M. Veraar. Fourier Multiplier Theorems Involving Type and Cotype. J. Fourier Anal. Appl., 24(2):583–619, 2018.MathSciNetCrossRefGoogle Scholar
  41. 41.
    G. M. Sklyar and P. Polak. On asymptotic estimation of a discrete type \(C_0\)-semigroups on dense sets: application to neutral type systems. Appl. Math. Optim., 75(2):175–192, 2017.MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Spijker. On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem. BIT, 31(3):551–555, 1991.MathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Strikwerda and B. Wade. A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions. In Linear operators (Warsaw, 1994), volume 38 of Banach Center Publ., pages 339–360. Polish Acad. Sci. Inst. Math., Warsaw, 1997.Google Scholar
  44. 44.
    J. van Dorsselaer, J. Kraaijevanger, and M. Spijker. Linear stability analysis in the numerical solution of initial value problems. Acta Numerica, 2:199–237, 1993.MathSciNetCrossRefGoogle Scholar
  45. 45.
    J. van Neerven. The asymptotic behaviour of semigroups of linear operators, volume 88 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1996.Google Scholar
  46. 46.
    J. van Neerven. Inequality of spectral bound and growth bound for positive semigroups in rearrangement invariant Banach function spaces. Arch. Math. (Basel), 66(5):406–416, 1996.MathSciNetCrossRefGoogle Scholar
  47. 47.
    J. van Neerven. Asymptotic behaviour of \(C_0\)-semigroups and \(\gamma \)-boundedness of the resolvent. J. Math. Anal. Appl., 358(2):380–388, 2009.MathSciNetCrossRefGoogle Scholar
  48. 48.
    L. Weis. The stability of positive semigroups on \(L_p\) spaces. Proc. Amer. Math. Soc., 123(10):3089–3094, 1995.MathSciNetzbMATHGoogle Scholar
  49. 49.
    L. Weis. Stability theorems for semi-groups via multiplier theorems. In Differential equations, asymptotic analysis, and mathematical physics (Potsdam, 1996), volume 100 of Math. Res., pages 407–411. Akademie Verlag, Berlin, 1997.Google Scholar
  50. 50.
    L. Weis. A short proof for the stability theorem for positive semigroups on \(L_p(\mu )\). Proc. Amer. Math. Soc., 126(11):3253–3256, 1998.MathSciNetCrossRefGoogle Scholar
  51. 51.
    L. Weis and V. Wrobel. Asymptotic behavior of \(C_0\)-semigroups in Banach spaces. Proc. Amer. Math. Soc., 124(12):3663–3671, 1996.MathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Zabczyk. A note on \(C_{0}\)-semigroups. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 23(8):895–898, 1975.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteAustralian National UniversityActonAustralia
  2. 2.Institute of Mathematics, Polish Academy of SciencesWarsawPoland
  3. 3.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations