Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Extreme climate events can slow down litter breakdown in streams

Abstract

Extreme temperatures have increased in intensity, duration and frequency in the last century, with potential consequences on key ecological processes such as organic matter breakdown. Many stream ecosystems are fueled by the breakdown of terrestrial leaf litter, which is exposed to atmospheric conditions for certain periods of time before entering the stream. Thus, extreme warming or freezing events may affect the litter physicochemical structure, which could translate into altered breakdown within the stream. The above prediction was tested by exposing litter of common riparian tree species in southern Chile to freezing (−20 ºC; dry or wet litter) or heating (40 ºC) and comparing breakdown with control litter exposed to room temperature (20 ºC), separating the effects of different breakdown agents (i.e., leaching, microorganisms and detritivores). The greatest effects were found in wet litter subjected to freezing; this treatment significantly increased leaching in the short term (48 h) and slowed down breakdown in the long term (30 days), mostly due to the inhibition of microbial breakdown. Heating also retarded microbial breakdown, but the effect was smaller. Our results suggest that short-term extreme temperatures—particularly cold ones—have the potential to slow down litter breakdown in streams, which will most likely impact global biogeochemical cycles where streams play a key role.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005jd006290

  2. Bärlocher F (2005) Leaching. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht

  3. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600. https://doi.org/10.1038/ngeo618

  4. Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albariño RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalves JF, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AOY, Buria LM, Villanueva VD, Zúñiga MC, Pringle CM (2011a) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92(9):1839–1848. https://doi.org/10.1890/10-2244.1

  5. Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves JF, Moretti M, Jinggut T, Lamothe S, M’erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC (2011b) A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecol Lett 14:289–294. https://doi.org/10.1111/j.1461-0248.2010.01578.x

  6. Boyero L, Pearson RG, Dudgeon D, Ferreira V, Graça MAS, Gessner MO, Boulton AJ, Chauvet E, Yule CM, Albariño RJ, Ramírez A, Helson JE, Callisto M, Arunachalam M, Chará J, Figueroa R, Moretti M, Chará AM, Davie JN, Encalada A, Lamothe S, Buria LM, Castela J, Cornejo A, Li AOY, M’erimba C, Villanueva VD, Zúñiga MC, Swan C, Barmuta LA (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob Ecol Biogeogr 21(2):134–141. https://doi.org/10.1111/j.1466-8238.2011.00673.x

  7. Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, Alexandrou MA, Graça MAS, Cardinale BJ, Albariño R, Arunachalam M, Barmuta LA, Boulton AJ, Bruder A, Callisto M, Chauvet E, Death RG, Dudgeon D, Encalada AC, Ferreira V, Figueroa R, Flecker AS, Gonçalves JFJ, Helson JE, Iwata T, Jinggut T, Mathooko J, Mathuriau C, M’Erimba C, Moretti MS, Pringle CM, Ramírez A, Ratnarajah L, Rincón J, Yule CM (2016) Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc R Soc B Biol Sci 283:20152664. https://doi.org/10.1098/rspb.2015.2664

  8. Canty A, Ripley B (2016) boot: Bootstrap R (S-Plus) Functions. R package version 1.3–18. R Foundation for Statistical Computing, Vienna

  9. Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468. https://doi.org/10.1086/303244

  10. Charoenrein S, Owcharoen K (2016) Effect of freezing rates and freeze-thaw cycles on the texture, microstructure and pectic substances of mango. Int Food Res J 23:613–620

  11. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533. https://doi.org/10.1038/nature03972

  12. Coq S, Souquet JM, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091. https://doi.org/10.1890/09-1076.1

  13. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Climate Change 2(7):491–496. https://doi.org/10.1038/nclimate1452

  14. Datry T, Foulquier A, Corti R, von Schiller D, Tockner K, Mendoza-Lera C, Clément JC, Gessner MO, Moleón M, Stubbington R, Gücker B, Albariño R, Allen DC, Altermatt F, Arce MI, Arnon S, Banas D, Banegas-Medina A, Beller E, Blanchette ML, Blanco-Libreros JF, Blessing JJ, Boëchat IG, Boersma KS, Bogan MT, Bonada N, Bond NR, Brintrup Barría KC, Bruder A, Burrows RM, Cancellario T, Canhoto C, Carlson SM, Cauvy-Fraunié S, Cid N, Danger M, de Freitas TB, De Girolamo AM, de La Barra E, del Campo R, Diaz-Villanueva VD, Dyer F, Elosegi A, Faye E, Febria C, Four B, Gafny S, Ghate SD, Gómez R, Gómez-Gener L, Graça MAS, Guareschi S, Hoppeler F, Hwan JL, Jones JI, Kubheka S, Laini A, Langhans SD, Leigh C, Little CJ, Lorenz S, Marshall JC, Martín E, McIntosh AR, Meyer EI, Miliša M, Mlambo MC, Morais M, Moya N, Negus PM, Niyogi DK, Papatheodoulou A, Pardo I, Pařil P, Pauls SU, Pešić V, Polášek M, Robinson CT, Rodríguez-Lozano P, Rolls RJ, Sánchez-Montoya MM, Savić A, Shumilova O, Sridhar KR, Steward AL, Storey R, Taleb A, Uzan A, Vander Vorste R, Waltham NJ, Woelfle-Erskine C, Zak D, Zarfl C, Zoppini A (2018) A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat Geosci. https://doi.org/10.1038/s41561-018-0134-4

  15. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

  16. Dirección Meteorológica de Chile (2017) Temperaturas Máximas Históricas

  17. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. https://doi.org/10.1126/science.289.5487.2068

  18. Figueroa R, Bonada N, Guevara P, Correa-Araneda F, Díaz ME, Ruiz VH (2013) Freshwater biodiversity and conservation in mediterranean climate streams of Chile. Hydrobiologia 719:269–289. https://doi.org/10.1007/s10750-013-1685-4

  19. Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Change Biol 21(8):2861–2880. https://doi.org/10.1111/gcb.12916

  20. Gaitan JJ, Bran D, Oliva G, Maestre FT, Aguiar MR, Jobbagy E, Buono G, Ferrante D, Nakamatsu V, Ciari G, Salomone J, Massara V (2014) Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biol Lett 10(10):20140673. https://doi.org/10.1098/rsbl.2014.0673

  21. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384. https://doi.org/10.2307/1939639

  22. Gossiaux A, Jabiol J, Poupin P, Chauvet E, Guérold F (2019) Seasonal variations overwhelm temperature effects on microbial processes in headwater streams: insights from a temperate thermal spring. Aquat Sci. https://doi.org/10.1007/s00027-019-0627-2

  23. Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393. https://doi.org/10.1002/1522-2632(200107)86:4/5%3c383:AID-IROH383%3e3.0.CO;2-D

  24. Graça MAS, Bärlocher F (2005) Radial diffusion assay for tannins. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht

  25. Gray DM, Dighton J (2006) Mineralization of forest litter nutrients by heat and combustion. Soil Biol Biochem 38(6):1469–1477. https://doi.org/10.1016/j.soilbio.2005.11.003

  26. Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262

  27. Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ET, Scheu S, Schmid B, van Ruijven J, Vos VC, Hattenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509(7499):218–221. https://doi.org/10.1038/nature13247

  28. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the World’s marine ecosystems. Science 328:1523–1528. https://doi.org/10.1126/science.1189930

  29. Hotchkiss ER, Hall RO Jr, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8(9):696–699. https://doi.org/10.1038/ngeo2507

  30. IPCC (2018) Global warming of 1.5 °C. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) An IPCC Special Report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland

  31. Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99(3):689–702. https://doi.org/10.1111/j.1365-2745.2011.01817.x

  32. Kiffney PM, Richardson JS (2010) Organic matter inputs into headwater streams of southwestern British Columbia as a function of riparian reserves and time since harvesting. For Ecol Manage 260(11):1931–1942. https://doi.org/10.1016/j.foreco.2010.08.016

  33. Koricheva J, Gurevitch J, Mengersen K (2013) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

  34. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago

  35. Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014) Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol Ecol 87(1):257–267. https://doi.org/10.1111/1574-6941.12221

  36. Martínez-Vilalta J, Lloret F, Breshears DD (2012) Drought-induced forest decline: causes, scope and implications. Biol Lett 8(5):689–691. https://doi.org/10.1098/rsbl.2011.1059

  37. Mayr S, Gruber A, Bauer H (2003) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436–441

  38. Pepler AS, Díaz LB, Prodhomme C, Doblas-Reyes FJ, Kumar A (2015) The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Weather Climate Extremes 9:68–77. https://doi.org/10.1016/j.wace.2015.06.005

  39. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing v. 3.6.0, Vienna

  40. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359. https://doi.org/10.1038/nature12760

  41. Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93:1546–1565. https://doi.org/10.3732/ajb.93.10.1546

  42. Reyes-Díaz M, Alberdi M, Piper F, Bravo LA, Corcuera LJ (2005) Low temperature responses of Nothofagus dombeyi and Nothofagus nitida, two evergreen species from south central Chile. Tree Physiol 25:1389–1398

  43. Rodríguez R, Ruiz E, Elissetche JP (2005) Árboles de Chile. Editorial Universidad de Concepción, Concepción

  44. Smith MD (2011) The ecological role of climate extremes: current understanding and future prospects. J Ecol 99(3):651–655. https://doi.org/10.1111/j.1365-2745.2011.01833.x

  45. Sun L, Perlwitz J, Hoerling M (2016GL) What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures? Geophys Res Lett 43:5345–5352. https://doi.org/10.1002/2016GL069024

  46. Taylor BR, Bärlocher F (1996) Variable effects of air-drying on leaching losses from tree leaf litter. Hydrobiologia 325:173–182. https://doi.org/10.1007/BF00014982

  47. Tonin AM, Goncalves JF Jr, Bambi P, Couceiro SRM, Feitoza LAM, Fontana LE, Hamada N, Hepp LU, Lezan-Kowalczuk VG, Leite GFM, Lemes-Silva AL, Lisboa LK, Loureiro RC, Martins RT, Medeiros AO, Morais PB, Moretto Y, Oliveria PCA, Pereira EB, Ferreira LP, Perez J, Petrucio MM, Reis DF, Roque N, Santos LEP, Siegloch AE, Tonello G, Boyero L (2017) Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Sci Rep 7(1):10799. https://doi.org/10.1038/s41598-017-10576-8

  48. Villarroel-Jiménez CP (2013) Eventos extremos de precipitación y temperatura en Chile: proyecciones para fines del siglo XXI. Universidad de Chile

  49. Wallace J, Eggert S, Meyer J, Webster J (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. https://doi.org/10.1126/science.277.5322.102

  50. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

  51. Wantzen KM, Wagner R, Suetfeld R, Junk WJ (2002) How do plan-herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Verh Int Verein Limnol 28:815–821

  52. Woodward G, Gessner MO, Giller PS, Gullis V, Hladyz H, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursière JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LM, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. https://doi.org/10.1126/science.1219534

Download references

Acknowledgements

We thank R.G. Pearson for his comments on an earlier version of this ms. This study was supported by the ‘FONDECYT de Iniciación’ Project No. 11170390 (CONICYT, Chile) and Basque Government funds (IT951-16) to the Stream Ecology Group at UPV/EHU led by J. Pozo. Authors’ contributions: FCA conceived and designed the study; FCA, KA, AD, CE, FEM and RF conducted field and laboratory work; AMT, JP, LB, NLR and FCA analyzed the data and discussed the results; LB wrote the paper with feedback from all other authors.

Author information

Correspondence to Francisco Correa-Araneda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Correa-Araneda, F., Tonin, A.M., Pérez, J. et al. Extreme climate events can slow down litter breakdown in streams. Aquat Sci 82, 25 (2020). https://doi.org/10.1007/s00027-020-0701-9

Download citation

Keywords

  • Benthos
  • Climate change
  • Ecosystem approach
  • Invertebrates
  • Riparian
  • Stream