Advertisement

Aquatic Sciences

, 81:24 | Cite as

The carbon pump supports high primary production in a shallow lake

  • Mikkel René AndersenEmail author
  • Theis Kragh
  • Kenneth Thorø Martinsen
  • Emil Kristensen
  • Kaj Sand-Jensen
Research Article

Abstract

Aquatic research on primary production and carbon dynamics often ignores calcification that supports photosynthesis by producing protons and forming CO2. Calcification prevents detrimental pH rise, but causes greater decrease of dissolved inorganic carbon (DIC). Concurrent DIC replenishment is therefore essential to maintain high photosynthesis. Here we show a mean daily DIC loss of 40% (26% to photosynthesis and 14% to calcification) in surface waters during summer periods in a shallow charophyte-lake and replenishment of the DIC pool by respiration and carbonate dissolution in the bottom waters followed by nocturnal mixing. The daytime DIC assimilation in organic matter relative to oxygen production in surface waters was close to 1.0 (molar ratio), while total DIC loss markedly exceeded oxygen production because of calcification. Our results suggest that photosynthesis would rapidly become carbon limited if permanent stratification prevented transfer of DIC from bottom waters to surface waters or if permanent mixing prevented CO2 accumulation conducive to carbonate dissolution in bottom waters. This vertical transport of DIC effectively functions as a physical and biological pump supporting high metabolism in charophyte-dominated shallow lakes with recurring daily stratification and mixing.

Keywords

Calcification Dissolved inorganic carbon Net ecosystem productivity Sediment carbon The carbon system High frequency data Shallow lake Carbon pump 

Notes

Supplementary material

27_2019_622_MOESM1_ESM.docx (142 kb)
Supplementary material 1 (DOCX 141 KB)

References

  1. Andersen MR, Sand-Jensen K, Iestyn Woolway R, Jones ID (2016) Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes. Aquat Sci.  https://doi.org/10.1007/s00027-016-0505-0 CrossRefGoogle Scholar
  2. Andersen MR, Kragh T, Sand-Jensen K (2017) Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proc R Soc B Biol Sci.  https://doi.org/10.1098/rspb.2017.1427 CrossRefGoogle Scholar
  3. Barnes DJ (1970) Coral skeletons: an explanation of their growth and structure. Science 170:1305–1308CrossRefGoogle Scholar
  4. Biggs J, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia.  https://doi.org/10.1007/s10750-016-3007-0 CrossRefGoogle Scholar
  5. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46(2):1–27.  https://doi.org/10.1029/2006RG000210 CrossRefGoogle Scholar
  6. Brunskill G (1969) Fayetteville Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol Oceanogr 14:830–847CrossRefGoogle Scholar
  7. Chauvaud L, Thompson JK, Cloern JE, Thouzeau G (2003) Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol Oceanogr 48:2086–2092CrossRefGoogle Scholar
  8. Christensen J, Sand-Jensen K, Staehr PA (2013) Fluctuating water levels control water chemistry and metabolism of a charophyte-dominated pond. Freshw Biol 58:1353–1365.  https://doi.org/10.1111/fwb.12132 CrossRefGoogle Scholar
  9. Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656CrossRefGoogle Scholar
  10. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack JM (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185CrossRefGoogle Scholar
  11. Cole JJ, Bade DL, Bastviken D, Pace ML, Van de Bogert M (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr Methods 8:285–293CrossRefGoogle Scholar
  12. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  13. Golléty C, Gentil F, Davoult D (2008) Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus. Oecologia 155:133–142CrossRefGoogle Scholar
  14. Gorham E, Boyce FM (1989) Influence of lake surface area and depth upon thermal stratification and the depth of the summer thermocline. J Great Lakes Res 15:233–245CrossRefGoogle Scholar
  15. Gran G (1952) Determination of the equivalence point in potentiometric titrations-part II. Analyst 77:661–671CrossRefGoogle Scholar
  16. Hotchkiss ER, Hall RO (2010) Linking calcification by exotic snails to stream inorganic carbon cycling. Oecologia 163:235–244CrossRefGoogle Scholar
  17. Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, New JerseyGoogle Scholar
  18. Kragh T, Sand-Jensen K (2018) Carbon limitation of lake productivity. Proc R Soc B 285:20181415CrossRefGoogle Scholar
  19. Kragh T, Andersen MR, Sand-Jensen K (2017) Profound afternoon depression of ecosystem production and nighttime decline of respiration in a macrophyte-rich, shallow lake. Oecologia 185:157–170CrossRefGoogle Scholar
  20. Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes—a review. Aquat Bot 72:249–260CrossRefGoogle Scholar
  21. Lewis E, Wallace D (1998) Program developed for CO2 System Calculations (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Dept. of Energy, Oak Ridge, TN). ORNL/CDIAC-105Google Scholar
  22. Marcé R, Obrador B, Morguí J-A, Riera JL, López P, Armengol J (2015) Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat Geosci 8:107CrossRefGoogle Scholar
  23. Martinsen KT, Andersen MR, Kragh T, Sand-Jensen K (2017) High rates and close diel coupling of primary production and ecosystem respiration in small, oligotrophic charophyte-rich lakes. Aquat Sci 79:995–1007CrossRefGoogle Scholar
  24. Martinsen KT, Andersen MR, Sand-Jensen K (2019) Water temperature dynamics and the prevalence of daytime stratification in small, shallow lakes. Hydrobiologia 826:247–262CrossRefGoogle Scholar
  25. McConnaughey T (1991) Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr 36:619–628CrossRefGoogle Scholar
  26. McConnaughey T, Whelan J (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117CrossRefGoogle Scholar
  27. McConnaughey TA, LaBaugh JW, Rosenberry DO, Striegl RG, Reddy MM, Schuster PF, Carter V (1994) Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnol Oceanogr 39:1319–1332CrossRefGoogle Scholar
  28. Müller B, Meyer JS, Gächter R (2016) Alkalinity regulation in calcium carbonate-buffered lakes. Limnol Oceanogr 61:341–352CrossRefGoogle Scholar
  29. Nielsen ES (1952) The use of radio-active carbon (C14) for measuring organic production in the sea. Journal de Conseil 18:117–140CrossRefGoogle Scholar
  30. Nõges P, Cremona F, Laas A, Martma T, Rõõm E-I, Toming K, Viik M, Vilbaste S, Nõges T (2016) Role of a productive lake in carbon sequestration within a calcareous catchment. Sci Total Environ 550:225–230CrossRefGoogle Scholar
  31. Peeters F, Atamanchuk D, Tengberg A, Encinas-Fernández J, Hofmann H (2016) Lake metabolism: comparison of lake metabolic rates estimated from a diel CO2- and the common diel O2-technique. PLoS One 11:e0168393CrossRefGoogle Scholar
  32. Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochimica et cosmochimica acta 46:1011–1040CrossRefGoogle Scholar
  33. Prins H, Snel J, Helder R, Zanstra P (1979) Photosynthetic bicarbonate utilization in the aquatic angiosperms Potamogeton and Elodea. Hydrobiol Bull 13:106–111CrossRefGoogle Scholar
  34. Quay P, Emerson S, Quay B, Devol AH (1986) The carbon cycle for Lake Washington—a stable isotope study. Limnol Oceanogr 31:596–611CrossRefGoogle Scholar
  35. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53CrossRefGoogle Scholar
  36. Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E (2011) Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ Model Softw 26:1325–1336CrossRefGoogle Scholar
  37. Sand-Jensen KAJ (1983) Photosynthetic carbon sources of stream macrophytes. J Exp Bot 34(2):198–210CrossRefGoogle Scholar
  38. Sand-Jensen K, Jespersen TS (2012) Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (− 269 to 105 C), pH and salt stress. Oecologia 169:331–339CrossRefGoogle Scholar
  39. Sand-Jensen K, Jensen RS, Gomes M, Kristensen E, Martinsen KT, Kragh T, Baastrup-Spohr L, Borum J (2018) Photosynthesis and calcification of charophytes. Aquat Bot 149:46–51.  https://doi.org/10.1016/j.aquabot.2018.05.005 CrossRefGoogle Scholar
  40. Schindler D, Fee E (1974) Experimental lakes area: whole-lake experiments in eutrophication. J Fisheries Board Canada 31:937–953CrossRefGoogle Scholar
  41. Stabel HH (1986) Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnol Oceanogr 31:1081–1094CrossRefGoogle Scholar
  42. Standard, Methods (1971) Standard methods for examination of water and wastewater, 13th edn. American Public Health Association, New YorkGoogle Scholar
  43. Stumm W, Morgan JJ (1970) Aquatic chemistry; an introduction emphasizing chemical equilibria in natural waters. Wiley, New York, p 583Google Scholar
  44. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314CrossRefGoogle Scholar
  45. van den Berg MS, Coops H, Simons J, Pilon J (2002) A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquat Bot 72:219–233CrossRefGoogle Scholar
  46. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402CrossRefGoogle Scholar
  47. Wanninkhof R, Knox M (1996) Chemical enhancement of CO2 exchange in natural waters. Limnol Oceanogr 41:689–697CrossRefGoogle Scholar
  48. Wetzel RG (2001) Limnology: lake and river ecosystems. Gulf Professional Publishing, HoustonGoogle Scholar
  49. Weyhenmeyer GA, Kortelainen P, Sobek S, Müller R, Rantakari M (2012) Carbon dioxide in boreal surface waters: a comparison of lakes and streams. Ecosystems 15:1295–1307CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mikkel René Andersen
    • 1
  • Theis Kragh
    • 2
  • Kenneth Thorø Martinsen
    • 2
  • Emil Kristensen
    • 2
  • Kaj Sand-Jensen
    • 2
  1. 1.Centre for Freshwater and Environmental StudiesDundalk institute of TechnologyDundalkIreland
  2. 2.Freshwater Biological SectionUniversity of CopenhagenCopenhagenIreland

Personalised recommendations