Aquatic Sciences

, 80:42 | Cite as

Succession of microconsumers in waterlogged pampean soils (Buenos aires, Argentina) and its significance for nearby wetlands

  • Lía C. SolariEmail author
  • Karina P. Quaíni
  • Néstor A. Gabellone
Research Article


In floodplains, the passive dispersal by drift occurs when water bodies become connected, and is a key feature offering pathways for the recolonization of periodically flooded habitats. Mesocosms with experimental flooding were used to document the succession of small invertebrates under differing hydrologic regimes with the intent of identifying which animals were capable of moving among habitats. The mesocosm experiments were performed in soils in sandy areas of the Salado-River basin including a mixed-use plot, a plot for breeding livestock, and a plot currently without any use located in different topographic positions (upper, middle, lower). Forty-seven taxa were found including ciliates, amoebae, rotifers, and microcrustaceans. The maximum total specific richness was recorded in middle soil and the minimum in upper soil because of a shorter colonization time. Higher mean densities occurred in middle and lower topographies, while the upper exhibited lower values. The ciliates and rotifers were the dominant. During the intermediate stage of flooding, the high density and biomass of the primary producers resulted in high concentration of dissolved oxygen (photosynthesis exceeded respiration). In contrast, in the final stage, low densities of microalgae led to low concentrations of dissolved oxygen and a high density of consumers (preponderance of respiration over photosynthesis). These flooded areas are significant as sources of microorganism inocula into the river. An abundance of microbiota arising from temporary wetlands and floodplains is fundamental for a successful recruitment of native-fish species.


In-situ-soil-flooding simulation Colonization and succession of microconsumers Agricultural land Salado-River basin 



We thank to the managers, teachers, professionals, and staff of the María Cruz and Manuel Inchausti School for allowing us to stay at the School during the sampling in the school’s field and for their unconditional support of this investigation. We are grateful to Dr. Gabriela Küppers for characterizing the ciliates. We are very grateful to the reviewers and the editors for the careful reading of our manuscript and the constructive and valuable comments. Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript. This work was partially funded by the Argentine Agency for Science and Technology promotion (ANPCyT), National Council of Sciences and Technology (CONICET; PIP 5612) and by the La Plata National University (Grant N484). Scientific contribution no. 1140 of the La Plata Ringuelet Limnology Institute.


  1. Ameghino F (1884) Las secas y las inundaciones en la provincia de Buenos Aires. Obras de retención y no de desagüe. Publicaciones del Ministerio de Asuntos Agrarios de la Provincia de Buenos Aires, La PlataGoogle Scholar
  2. Angeler DG, Alvarez-Cobelas M, Sánchez-Carrillo S (2010) Evaluating environmental conditions of a temporary pond complex using rotifer emergence from dry soils. Ecol Indic 10:545–549CrossRefGoogle Scholar
  3. Aoyagui ASM, Bonecker CC (2004) The art status of rotifer studies in natural environments of South America: floodplains. Acta Sci Biol Sci 26:385–406. CrossRefGoogle Scholar
  4. APHA (1995) Standard methods for the examination of waters and wastewaters, 19th edn. APHA/AWWA/WPCF, Washington DCGoogle Scholar
  5. Bayley PB (1995) Understanding large river: floodplain ecosystems. Bioscience 45:153–158CrossRefGoogle Scholar
  6. Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796CrossRefGoogle Scholar
  7. Boulton AJ, Lloyd LN (1992) Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. River Res Appl 7(2):137–151CrossRefGoogle Scholar
  8. Brock MA, Nielsen DL, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218CrossRefGoogle Scholar
  9. Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30(4):492–507CrossRefGoogle Scholar
  10. Cabrera AL (1971) Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14:1–42Google Scholar
  11. Catlin AK, Collier KJ, Duggan IC (2017) Zooplankton generation following inundation of floodplain soils: effects of vegetation type and riverine connectivity. Mar Freshw Res 68:76–86Google Scholar
  12. Chaneton EJ (2006) Las inundaciones en pastizales pampeanos. Impacto ecológico de las perturbaciones naturales. Ciencia Hoy 16(92):18–32Google Scholar
  13. Claps MC, Gabellone NA, Neschuk NC (2009) Influence of regional factors on zooplankton structure in a Author: Kindly provide accessed date for the references (Darwin Project Nematodes 2018; Lynn 2008).saline lowland river: the Salado River (Buenos Aires province, Argentina). River Res Appl 25(4):453–471CrossRefGoogle Scholar
  14. Cohen GM, Shurin JB (2003) Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103:603–617CrossRefGoogle Scholar
  15. Darwin Project Nematodes (2009).
  16. De Smet W (1996) Rotifera: the Proalidae (Monogononta). In: Dumont H (ed) Guides to the identification of the microinvertebrates of the continental waters of the world, vol 4Google Scholar
  17. Devetter M, Schöll K (2014) Hydrobiont animals in floodplain soil: are they positively or negatively affected by flooding? Soil Biol Biochem 69:393–397CrossRefGoogle Scholar
  18. Elster H-J, Ohle W (1972) Das Zooplankton der Binnengewässer. 1. Teil. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), StuttgartGoogle Scholar
  19. Foissner W (1997) Soil ciliates (Protozoa: Ciliophora) from evergreen rain forests of Australia, South America and Costa Rica: diversity and description of new species. Biol Fertil Soils 25:317–339CrossRefGoogle Scholar
  20. Foissner W (2002) Neotypiphication of protests, especially ciliates (Protozoa, Ciliophora). Bull Zool Nomencl 59(3):165–169Google Scholar
  21. Foissner W, Berger H, Schaumburg J (1999) Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, Heft 3/99:1–799Google Scholar
  22. Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia 5:1–1459Google Scholar
  23. Foissner W, Chao A, Katz LA (2008) Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers Conserv 17:345–363CrossRefGoogle Scholar
  24. Frisch D (2002) Dormancy, dispersal and the survival of cyclopoid copepods (Cyclopoida, Copepoda) in a lowland floodplain. Freshw Biol 47:1269–1281CrossRefGoogle Scholar
  25. Frutos SM (1998) Densidad y diversidad del zooplancton en los ríos Salado y Negro— planicie del río Paraná—Argentina. Rev Bras Biol 58(3):431–444CrossRefGoogle Scholar
  26. Gabellone NA, Solari LC, Claps MC (2001) Planktonic and physico–chemical dynamics of a markedly fluctuating backwater pond associated with a lowland river (Salado River, Buenos Aires, Argentina). Lakes Reserv Res Manag 6:133–142CrossRefGoogle Scholar
  27. Gabellone NA, Sarandón R, Claps MC (2003) Caracterización y zonificación ecológica de la cuenca del río Salado. In: Maiola O, Gabellone NA, Hernández M (eds) Inundaciones en la región pampeana. Editorial Universidad Nacional de La Plata, La Plata, pp 87–122Google Scholar
  28. Gabellone NA, Claps MC, Solari LC, Neschuk NC (2005) Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry 75:455–477CrossRefGoogle Scholar
  29. Gabellone NA, Claps MC, Solari LC, Neschuk NC, Ardohain DM (2013) Spatial and temporal distribution pattern of phosphorus fractions in a saline lowland river with agricultural land use (Salado River, Buenos Aires, Argentina). Fundam Appl Limnol 183/4:271–286CrossRefGoogle Scholar
  30. Gabellone NA, Claps MC, Ardohain DM, Dippolito A, Bazzuri ME, Solari LC (2014) Relationship between the zoo- and phytoplankton biomasses in a saline lowland river (Argentina): a short-time-scale analysis. Fundam Appl Limnol 184/4:307–327CrossRefGoogle Scholar
  31. Górski K, Collier K, Duggan IC, Taylor CM, Hamilton DP (2013) Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw Biol 58:1458–1470CrossRefGoogle Scholar
  32. Havel JE, Matt Eisenbacher E, Black AA (2000) Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquat Ecol 34:63–76CrossRefGoogle Scholar
  33. Junk WJ, Robertson BA (1997) Aquatic invertebrates. In: Junk WJ (ed) The central amazon floodplain ecology of a pulsing system. Springer, Berlin, pp 279–298CrossRefGoogle Scholar
  34. Koste W (1996) On soil Rotatoria from a Lithotelma near Halali Lodge in Etosha National Park in N-Namibia, South Africa. Internationale Revue der gesamten Hydrobiologie Hydrographie 81:353–365CrossRefGoogle Scholar
  35. Koste W, Shiel RJ (1987) Rotifera from Australian inland waters. II. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invertebr Syst 1:949–1021. CrossRefGoogle Scholar
  36. Koste W, José de Paggi S (1982) Rotifera of the Superorder Monogononta recorded from Neotropis. Gewässer Abwässer 68:71–102Google Scholar
  37. Lynn DH (2008) The ciliated protozoa: characterization, classification, and guide to the literature. Springer Science & Business Media, Canada.
  38. Margalef R (1963) On certain unifying principles in ecology. Am Nat 897:357–374CrossRefGoogle Scholar
  39. Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, New Jersey, p 736Google Scholar
  40. Montgomery D (2005) Design and analysis of experiments, 6th edn. John Wiley, New YorkGoogle Scholar
  41. Neiff JJ (1996) Large rivers of South America: toward the new approach. Verh Int Ver Theoret Angew Limnol 26:167–180Google Scholar
  42. Neschuk NC (2001) Limnología del río Salado (Buenos Aires) y el uso de la tierra en su cuenca. Tesis Doctoral 767. Facultad Ciencias Naturales y Museo, Universidad Nacional de La PlataGoogle Scholar
  43. Neschuk N, Gabellone NA, Solari LC (2002) Plankton characterisation of a lowland river (Salado River, Argentina). Verh Int Ver Theoret Angew Limnol 28:1336–1339Google Scholar
  44. Odum E (1969) The strategy of ecosystem development. Science 164:262–270CrossRefPubMedGoogle Scholar
  45. Palazzo F, Bonecker CC, Negae M (2008) Zooplankton dormancy forms in two environments of the upper Paraná River floodplain (Brazil). Acta Limnol Bras 20:55–62Google Scholar
  46. Pilato G (1979) Correlations between cryptobiosis and other biological characteristics in some soil animals. Ital J Zool 46(4):319–332Google Scholar
  47. Prach K, Walker LR (2011) Four opportunities for studies of ecological succession. Trends Ecol evol 26(3):119–123CrossRefPubMedGoogle Scholar
  48. Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands. Science and applications. EUA, New YorkCrossRefGoogle Scholar
  49. Reid J (1985) Clave de identificaçaõ e lista de referências bibliográficas para as especies continentais sulamericanas de vida livre da ordem Cyclopoidea (Crustacea, Copepoda). Boletim de zoologia Universidade Sao Paulo 9:17–143CrossRefGoogle Scholar
  50. Ricci C (2001) Dormancy patterns in rotifers. In: Rotifera IX 1–11. Springer, NetherlandsGoogle Scholar
  51. Santangelo JM, Lopes PM, Nascimento MO, Fernandes APC, Bartole S, Figueiredo-Barros MP, Leal JJF, Esteves FA, Farjalla VF, Bonecker CC, Bozelli RL (2015) Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758(1):183–195CrossRefGoogle Scholar
  52. Scheffer M (1998) Ecology of shallow lakes. Chapman and Hall, London, p 357Google Scholar
  53. Schöll K, Kiss A (2008) Spatial and temporal distribution patterns of zooplankton assemblages (Rotifera, Cladocera, Copepoda) in the water bodies of the Gemenc Floodplain (Duna-Dráva National Park, Hungary). Opuscula Zool Budapest 39:65–76Google Scholar
  54. Schröeder T (2001) Colonising strategies and diapause of planktonic rotifers (Monogononta Rotifers) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). Int Rev Hydrobiol 86(6):635–660CrossRefGoogle Scholar
  55. Schröeder T (2005) Diapause in monogonont rotifers. Hydrobiologia 546:291–306CrossRefGoogle Scholar
  56. Segers H (1995) Rotifera: the Lecanidae (Monogononta). In: Dumont H (ed) Guides to the identification of the microinvertebrates of the continental waters of the world, vol 6. SPB Academic Publishing, The HagueGoogle Scholar
  57. Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595:49–59CrossRefGoogle Scholar
  58. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  59. Shiel RJ, Green JD, Nielsen DL (1998) Floodplain biodiversity: why are there so many species? Hydrobiologia 387/388:39–46CrossRefGoogle Scholar
  60. Soil Survey Staff (2003) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 9th edn. Natural Resources Conservation Service. US Department of Agriculture Handbook, Washington DC, p 325Google Scholar
  61. Sokal RR, Rohlf FJ (1979) Biometria: principios y métodos estadísticos en la investigacion biológica. H. Blume, MadridGoogle Scholar
  62. Solari LC, Claps MC, Gabellone NA (2002) River backwater pond interactions in the lower basin of the Salado River (Buenos Aires, Argentina). Arch Hydrobiol 141(1/2):99–119Google Scholar
  63. Ventimiglia LA, Carta HG, Rillo SN (2000) Soja: nutrición nitrogenada. Revista de tecnología agropecuaria. INTA 5(14):45–48Google Scholar
  64. Viglizzo EF, Frank FC, Carreño L (2006) Situación ambiental en las ecorregiones Pampa y Campos y Malezas. In: Brown A, Martinez O, Acari M, Corchera J (eds) La Situación Ambiental Argentina 2005, 1st edn. Fundación Vida Silvestre Argentina,  Buenos Aires, pp 262–278Google Scholar
  65. Ward JV, Stanford JA (1995) Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. River Res Appl 11(1):105–119CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Instituto de Limnología “Dr. Raúl A. Ringuelet” CCT CONICET La PlataLa PlataArgentina
  2. 2.Ministerio de Ambiente y Desarrollo SustentableBuenos AiresArgentina

Personalised recommendations