Advertisement

Annals of Combinatorics

, Volume 23, Issue 2, pp 285–293 | Cite as

Minimal Polygons with Fixed Lattice Width

  • Filip Cools
  • Alexander LemmensEmail author
Article
  • 4 Downloads

Abstract

We classify the unimodular equivalence classes of inclusion-minimal polygons with a certain fixed lattice width. As a corollary, we find a sharp upper bound on the number of lattice points of these minimal polygons.

Keywords

Convex lattice Polytopes Convex lattice polygons Lattice width 

Mathematics Subject Classification

Primary 52B20 52C05 Secondary 05E18 

Notes

Acknowledgements

The second author is supported by the Flemish Research Council (FWO). We also want to thank the anonymous referees for their useful remarks.

References

  1. 1.
    Barile, M., Bernardi, D., Borisov, A., Kantor, J.-M.: On empty lattice simplices in dimension 4. Proc. Amer. Math. Soc. 139(12), 4247–4253 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Castryck, W., Cools, F.: Linear pencils encoded in the Newton polygon. Int. Math. Res. Not. IMRN 2017(10), 2998–3049 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Castryck, W. Cools, F.: The lattice size of a lattice polygon. J. Combin. Theory Ser. A 136, 64–95 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Castryck, W., Cools, F., Demeyer, J., Lemmens, A.: Computing graded Betti tables of toric surfaces. Accepted in Trans. Amer. Math. Soc., arXiv:1606.08181 (2016)
  5. 5.
    Draisma, J., McAllister, T.B., Nill, B.: Lattice-width directions and Minkowski’s \(3^d\)-theorem. SIAM J. Discrete Math. 26(3), 1104–1107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fejes Tóth, L., Makai Jr., E.: On the thinnest non-separable lattice of convex plates. Stud. Sci. Math. Hungar. 9(1974), 191–193 (1975)Google Scholar
  7. 7.
    Haase, C., Ziegler, G.M.: On the maximal width of empty lattice simplices, European J. Combin. 21(1), 111–119 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lubbes, N., Schicho, J.: Lattice polygons and families of curves on rational surfaces. J. Algebraic Combin. 34(2), 213–236 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sebő, A.: An introduction to empty lattice-simplices. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.E. (eds.) Integer Programming and Combinatorial Optimization (Graz, 1999), pp. 400–414. Lecture Notes in Comput. Sci., 1610, Springer, Berlin (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations