Annals of Combinatorics

, Volume 23, Issue 2, pp 317–333 | Cite as

A Proof of the Delta Conjecture When \(\varvec{q=0}\)

  • Adriano Garsia
  • Jim Haglund
  • Jeffrey B. Remmel
  • Meesue YooEmail author


In Haglund et al. (Trans. Amer. Math. Soc. 370(6):4029–4057, 2018), Haglund, Remmel and Wilson introduce a conjecture which gives a combinatorial prediction for the result of applying a certain operator to an elementary symmetric function. This operator, defined in terms of its action on the modified Macdonald basis, has played a role in work of Garsia and Haiman on diagonal harmonics, the Hilbert scheme, and Macdonald polynomials (Garsia and Haiman in J. Algebraic Combin. 5:191–244, 1996; Haiman in Invent. Math. 149:371–407, 2002). The Delta Conjecture involves two parameters qt; in this article we give the first proof that the Delta Conjecture is true when \(q=0\) or \(t=0\).


Delta Conjecture Macdonald polynomials Cauchy kernel method 

Mathematics Subject Classification

Primary: 05E05 Secondary: 05E10 



A. Garsia was supported by NSF Grant DMS-1700233. J. Haglund was supported by NSF grant DMS-1600670. M. Yoo was supported by NRF Grants 2016R1A5A1008055 and 2017R1C1B2005653.


  1. 1.
    Carlsson, E., Mellit, A.: A proof of the shuffle conjecture. J. Amer. Math. Soc. 31(3), 661–697 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D’Adderio, M., Iraci, A., Vanden Wyngaerd, A.: The generalized Delta conjecture at \(t=0\). arXiv:1901.02788 (2019)
  3. 3.
    D’Adderio, M., Vanden Wyngaerd, A.: Decorated Dyck paths, the Delta conjecture, and a new \(q,t\)-square. arXiv:1709.08736 (2017)
  4. 4.
    Garsia, A.M., Haiman, M.: A remarkable \(q, t\)-Catalan sequence and \(q\)-Lagrange inversion. J. Algebraic Combin. 5(3), 191–244 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Garsia, A.M., Haiman, M., Tesler, G.: Explicit plethystic formulas for Macdonald \(q,t\)-Kostka coefficients. Sém. Lothar. Combin. 42, Art. B42m. (1999)Google Scholar
  6. 6.
    Garsia, A.M., Liese, J., Remmel, J.B., Yoo, M.: Exploring a Delta Schur conjecture. arXiv:1801.07385 (2018)
  7. 7.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Second Edition. Encyclopedia of Mathematics and Its Applications Vol. 96. Cambridge University Press, Cambridge (2004)Google Scholar
  8. 8.
    Haglund, J.: The \(q\), \(t\)-Catalan numbers and the space of diagonal harmonics. University Lecture Series, Vol. 41. American Mathematical Society, Providence, RI (2008)Google Scholar
  9. 9.
    Haglund, J., Haiman, M., Loehr, N., Remmel, J.B., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126(2), 195–232 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Haglund, J., Remmel, J.B., Wilson, A.T.: The delta conjecture. Trans. Amer. Math. Soc. 370(6), 4029–4057 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Haglund, J., Rhoades, B., Shimozono, M.: Hall-Littlewood expansions of Schur Delta operators at \(t=0\). Sém. Lothar. Combin. 79, B79c (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Haglund, J., Rhoades, B., Shimozono, M.: Ordered set partitions, generalized coinvariant algebras, and the delta conjecture. Adv. Math. 329, 851–915 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Haiman, M.: Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149(2), 371–407 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Second Edtion. Reprint of the 2008 paperback edition. Oxford University Press, New York (2015)Google Scholar
  15. 15.
    Remmel, J.B., Wilson, A.T.: An extension of MacMahon’s equidistribution theorem to ordered set partitions. J. Combin. Theory Ser. A 134, 242–277 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rhoades, B.: Ordered set partition statistics and the delta conjecture. J. Combin. Theory Ser. A 154, 172–217 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Romero, M.: The delta conjecture at \(q=1\). Trans. Amer. Math. Soc. 369(10), 7509–7530 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wilson, A.T.: An extension of MacMahon’s equidistribution theorem to ordered multiset partitions. Electron. J. Combin. 23(1), #P1.5 (2016)Google Scholar
  19. 19.
    Zabrocki, M.: A proof of the \(4\)-variable Catalan polynomial of the Delta conjecture. arXiv:1609.03497 (2016)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adriano Garsia
    • 1
  • Jim Haglund
    • 2
  • Jeffrey B. Remmel
    • 1
  • Meesue Yoo
    • 3
    Email author
  1. 1.Department of MathematicsUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of MathematicsDankook UniversityCheonanRepublic of Korea

Personalised recommendations