Advertisement

Annals of Combinatorics

, Volume 23, Issue 2, pp 295–315 | Cite as

Random Partitions and Cohen–Lenstra Heuristics

  • Jason FulmanEmail author
  • Nathan Kaplan
Article
  • 19 Downloads

Abstract

We investigate combinatorial properties of a family of probability distributions on finite abelian p-groups. This family includes several well-known distributions as specializations. These specializations have been studied in the context of Cohen–Lenstra heuristics and cokernels of families of random p-adic matrices.

Keywords

Cohen–Lenstra heuristics Hall–Littlewood polynomial Probability measure Random matrices Random partitions Finite abelian group 

Mathematics Subject Classification

15B52 05E05 

Notes

Acknowledgements

Fulman is supported by Simons Foundation Grant 400528. Kaplan is supported by NSA Young Investigator Grant H98230-16-10305, NSF Grant DMS 1802281 and by an AMS-Simons Travel Grant. The authors thank the referees, Gilyoung Cheong, and Melanie Matchett Wood for helpful comments.

References

  1. 1.
    Bhargava, M., Kane, D.M., Lenstra Jr., H.W., Poonen, B., Rains, E.: Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves. Camb. J. Math. 3(3), 275–321 (2015)Google Scholar
  2. 2.
    Boston, N., Wood, M.M.: Non-abelian Cohen-Lenstra heuristics over function fields. Compos. Math. 153(7), 1372–1390 (2017)Google Scholar
  3. 3.
    Chinta, G., Kaplan, N., Koplewitz, S.: The cotype zeta function of \({\mathbb{Z}}^d\). arXiv:1708.08547v1 (2017)
  4. 4.
    Clancy, J., Kaplan, N., Leake, T., Payne, S., Wood, M.M.: On a Cohen-Lenstra heuristic for Jacobians of random graphs. J. Algebraic Combin. 42(3), 701–723 (2015)Google Scholar
  5. 5.
    Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. In: Jager, H. (ed.) Number Theory, Noordwijkerhout 1983 (Noordwijkerhout,1983), pp. 33–62. Springer, Berlin (1984)Google Scholar
  6. 6.
    Delaunay, C.: Heuristics of Tate-Shafarevitch groups of elliptic curves defined over \({\mathbb{Q}}\). Experiment. Math. 10(2), 191–196 (2001)Google Scholar
  7. 7.
    Delaunay, C.: Averages of groups involving \(p^l\)-rank and combinatorial identities. J. Number Theory 131(3), 536–551 (2011)Google Scholar
  8. 8.
    Delaunay, C., Jouhet, F.: \(p^\ell \)-torsion points in finite abelian groups and combinatorial identities. Adv. Math. 258, 13–45 (2014)Google Scholar
  9. 9.
    Delaunay, C., Jouhet, F.: The Cohen-Lenstra heuristics, moments and \(p^j\)-ranks of some groups. Acta Arith. 164(3), 245–263 (2014)Google Scholar
  10. 10.
    Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields. Ann. of Math. (2) 183(3), 729–786 (2016)Google Scholar
  11. 11.
    Fouvry, E., Klüners, J.: Cohen-Lenstra heuristics of quadratic number fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory, Lecture Notes in Comput. Sci., Vol. 4076, pp. 40–55. Springer, Berlin (2006)Google Scholar
  12. 12.
    Friedman, E., Washington, L.: On the distribution of divisor class groups of curves over a finite field. In: De Koninck, J.-M., Levesque, C. (eds.) Théorie des Nombres (Quebec, PQ, 1987), pp. 227–239. de Gruyer, Berlin (1989)Google Scholar
  13. 13.
    Fulman, J.: A probabilistic approach toward conjugacy classes in the finite general linear and unitary groups. J. Algebra 212(2), 557–590 (1999)Google Scholar
  14. 14.
    Fulman, J.: Hall-Littlewood polynomials and Cohen-Lenstra heuristics for Jacobians of random graphs. Ann. Comb. 20(1), 115–124 (2016)Google Scholar
  15. 15.
    Gerth III, F.: The \(4\)-class ranks of quadratic fields. Invent. Math. 77(3), 489–515 (1984)Google Scholar
  16. 16.
    Gerth III, F.: Extension of conjecture of Cohen and Lenstra. Exposition. Math. 5(2), 181–184 (1987)Google Scholar
  17. 17.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Fifth Edition. Oxford University Press, New York (1979)Google Scholar
  18. 18.
    Lubotzky, A., Segal, D.: Subgroup Growth. Progress in Mathematics, Vol. 212. Birkhäuser Verlag, Basel (2003)Google Scholar
  19. 19.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Second Edition. Oxford University Press, New York (1995)Google Scholar
  20. 20.
    Petrogradsky, V.M.: Multiple zeta functions and asymptotic structure of free abelian groups of finite rank. J. Pure Appl. Algebra 208(3), 1137–1158 (2007)Google Scholar
  21. 21.
    Speyer, D.: An expectation of Cohen-Lenstra measure (answer). MathOverflow. https://mathoverflow.net/questions/9950
  22. 22.
    Stanley, R.P., Wang, Y.: The Smith normal form distribution of a random integer matrix. SIAM J. Discrete Math. 31(3), 2247–2268 (2017)Google Scholar
  23. 23.
    Tse, L-S.: Distribution of cokernels of \((n+u) \times n\) matrices over \(\mathbb{Z}_p\). arXiv:1608.01714 (2016)
  24. 24.
    Wood, M.M.: The distribution of sandpile groups of random graphs. J. Amer. Math. Soc. 30(4), 915–958 (2017)Google Scholar
  25. 25.
    Wood, M.M.: Cohen-Lenstra heuristics and local conditions. Res. Number Theory 4(4), Art. 41 (2018)Google Scholar
  26. 26.
    Wood, M.M.: Random integral matrices and the Cohen-Lenstra heuristics. Amer. J. Math. 41(2), 383–398 (2019)Google Scholar
  27. 27.
    Wright, D.J.: Distribution of discriminants of abelian extensions. Proc. London Math. Soc. (3) 58(1), 17–50 (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations