Advertisement

The Boustrophedon Transform for Descent Polytopes

  • Richard EhrenborgEmail author
  • Alex Happ
Article

Abstract

We give a short proof that the f-vector of the descent polytope \({{\,\mathrm{DP}\,}}_{\mathbf {v}}\) is componentwise maximized when the word \(\mathbf {v}\) is alternating. Our proof uses an f-vector analog of the boustrophedon transform.

Keywords

The boustrophedon transform Descent polytopes Alternating words f-vector 

Mathematics Subject Classification

52B05 (05A15) 

Notes

Acknowledgements

The authors are grateful to the two referees for their comments on an earlier version of this paper, including contributing the question in the concluding remark. This work was supported by a grant from the Simons Foundation (#429370, Richard Ehrenborg).

References

  1. 1.
    de Bruijn, N.G.: Permutations with given ups and downs. Nieuw Arch. Wisk. (3) 18, 61–65 (1970)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chebikin, D., Ehrenborg, R.: The \(f\)-vector of the descent polytope. Discrete Comput. Geom. 45(3), 410–424 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ehrenborg, R., Kitaev, S., Perry, P.: A spectral approach to consecutive pattern-avoiding permutations. J. Comb. 2(3), 305–353 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Millar, J., Sloane, N.J.A., Young, N.E.: A new operation on sequences: the boustrophedon transform. J. Combin. Theory Ser. A 76(1), 44–54 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Niven, I.: A combinatorial problem of finite sequences. Nieuw Arch. Wisk. (3) 16, 116–123 (1968)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Readdy, M.: Extremal problems for the Möbius function in the face lattice of the \(n\)-octahedron. Discrete Math. 139(1-3), 361–380 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sagan, B.E., Yeh, Y.-N., Ziegler, G.M.: Maximizing Möbius functions on subsets of Boolean algebras. Discrete Math. 126(1-3), 293–311 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Viennot, G.: Permutations ayant une forme donnée. Discrete Math. 26(3), 279–284 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Viennot, G.: Équidistribution des permutations ayant une forme donnée selon les avances et coavances. J. Combin. Theory Ser. A 31(1), 43–55 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA
  2. 2.Department of MathematicsChristian Brothers UniversityMemphisUSA

Personalised recommendations