Advertisement

Annals of Combinatorics

, Volume 22, Issue 4, pp 711–768 | Cite as

A Multidimensional Szemerédi Theorem in the Primes via Combinatorics

  • Brian Cook
  • Ákos Magyar
  • Tatchai Titichetrakun
Article
  • 16 Downloads

Abstract

Let A be a subset of positive relative upper density of \(\mathbb {P}^d\), the d-tuples of primes. We present an essentially self-contained, combinatorial argument to show that A contains infinitely many affine copies of any finite set \(F\subseteq \mathbb {Z}^d\). This provides a natural multidimensional extension of the theorem of Green and Tao on the existence of long arithmetic progressions in the primes.

Keywords

Hypergraph regularity Primes Progressions 

Mathematics Subject Classification

05C65 05C55 11B30 11N13 

Notes

References

  1. 1.
    Conlon, D., Fox, J., Zhao, Y.: A relative Szemerédi theorem. Geom. Funct. Anal. 25(3), 733–762 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cook, B., Magyar, A.: Constellations in \(\mathbb{P}^d\). Int. Math. Res. Not. 2012(12), 2794–2816 (2012)zbMATHGoogle Scholar
  3. 3.
    Furstenberg, H., Katznelson, Y.: An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math. 34, 275–291 (1979)CrossRefGoogle Scholar
  4. 4.
    Fox, J., Zhao, Y.: A short proof of the multidimensional Szemerédi theorem in the primes. Amer. J. Math. 137(4), 1139–1145 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gowers, W.T.: Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math. 166(3), 897–946 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gowers, W.T.: Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. Ann. of Math. 167(2), 481–547 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Green, B., Tao, T.: Linear equations in primes. Ann. of Math. 171(3), 1753–1850 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Green, B., Tao, T.: The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. 175(2), 541–566 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers \(U^{s+1}[N]\)-norm. Ann. of Math. 176(2), 1231–1372 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goldston, D.A., Yıldırım, C. Y.: Higher correlations of divisor sums related to primes I: Triple correlations. Integers 3, #A5 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Magyar, A., Titichetrakun, T.: Corners in dense subsets of \(P^d\). PreprintGoogle Scholar
  13. 13.
    Nagle, B., Rödl, V., Schacht, M.: The counting lemma for regular \(k\)-uniform hypergraphs. Random Structures Algorithms 28(2), 113–179 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Reingold, O., Trevisan, L., Tulsiani, M., Vadham, S.: Dense subsets of pseudorandom sets. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 76-85. IEEE Computer Society, Philadelphia, PA (2008)Google Scholar
  15. 15.
    Solymosi, J.: Note on a generalization of Roth’s theorem. In: Aronov, B., Basu, S., Pach, J., Shariv., M. (eds.) Discrete and Computational Geometry, Algorithms Combin. Vol. 25, pp. 825–827. Springer, Berlin (2003)Google Scholar
  16. 16.
    Szemerédi, E.: On sets of integers containing no \(k\) elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tao, T.: The Gaussian primes contain arbitrarily shaped constellations. J. Anal. Math. 99, 109–176 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tao, T.: Szemerédi’s regularity lemma revisited. Contrib. Discrete Math. 1(1), 8–28 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tao, T.: A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113(7), 1257–1280 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tao, T., Ziegler, T.: A multi-dimensional Szemerédi theorem for the primes via a correspondence principle. Israel J. Math. 207(1), 203–228 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brian Cook
    • 2
  • Ákos Magyar
    • 1
  • Tatchai Titichetrakun
    • 3
  1. 1.University of GeorgiaAthensUSA
  2. 2.Kent State UniversityKentUSA
  3. 3.University of British ColumbiaVancouverCanada

Personalised recommendations