Results in Mathematics

, 74:128 | Cite as

Pointwise Wavelet Estimation of Regression Function Based on Biased Data

  • Huijun Guo
  • Junke KouEmail author


In this paper, we establish wavelet estimations on pointwise \(l^{p}(1\le p<\infty )\) risk for multivariate regression functions based on biased data. We firstly introduce a linear wavelet estimator and discuss the convergence rate of this estimator. In order to obtain an adaptive estimator, a nonlinear wavelet estimator is constructed by the hard thresholding method. It should be pointed out that the convergence rate of linear and nonlinear wavelet estimators coincide with the optimal convergence rate of pointwise nonparametric estimation.


Pointwise adaptive biased regression estimation wavelets 

Mathematics Subject Classification

62G07 62G20 42C40 



The authors would like to thank the anonymous reviewer for the important comments and suggestions. This paper is supported by Guangxi Natural Science Foundation (Nos. 2017GXNSFAA198194 and 2018GXNSFBA281076), Guangxi Science and Technology Project (Nos. Guike AD18281058 and Guike AD18281019), the Guangxi Young Teachers Basic Ability Improvement Project (Nos. 2018KY0212 and 2019KY0218) and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation.


  1. 1.
    Butucea, C.: The adaptive rate of convergence in a problem of pointwise density estimation. Stat. Probab. Lett. 47, 85–90 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cai, T.T.: Rates of convergence and adaptation over Besov space under pointwise risk. Stati. Sin. 13, 881–902 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chaubey, Y.P., Chesneau, C., Shirazi, E.: Wavelet-based estimation of regression function for dependent biased data under a given random design. J. Nonparametric Stat. 25(1), 53–71 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chaubey, Y.P., Shirazi, E.: On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing. Commun. Stat. Theory Methods 44, 885–899 (2015)CrossRefGoogle Scholar
  5. 5.
    Chesneau, C., Navarro, F.: On the pointwise mean squared error of a multidimensional term-by term thresholding wavelet estimator. Commun. Stat. Theory Methods 46, 5643–5655 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chesneau, C., Shirazi, E.: Nonparametric wavelet regression based on biased data. Commun. Stat. Theory Methods 43, 2642–2658 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Donoho, D.L., Johnstone, M.I., Kerkyacharian, G., Picard, D.: Density estimation by wavelet thresholding. Ann. Stat. 24(2), 508–539 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation and Statistical Application. Springer, New York (1997)zbMATHGoogle Scholar
  9. 9.
    Kou, J.K., Liu, Y.M.: An extension of Chesneau’s theorem. Stat. Probab. Lett. 108, 23–32 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kou, J.K., Liu, Y.M.: Nonparametric regression estimations over \(L^{p}\) risk based on biased data. Commun. Stat. Theory Methods 46(5), 2375–2395 (2017)CrossRefGoogle Scholar
  11. 11.
    Masry, E.: Wavelet-based estimation of multivariate regression function in Besov spaces. J. Nonparametric Stat. 12, 283–308 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meyer, Y.: Wavelets and Operators. Hermann, Paris (1990)zbMATHGoogle Scholar
  13. 13.
    Pensky, M.: Density deconvolution based on wavelets with bounded supports. Stat. Probab. Lett. 56, 261–269 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rebelles, G.: Pointwise adaptive estimation of a multivariate density under independence hypothesis. Bernoulli 21(4), 1984–2023 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sköld, M.: Kernel regression in the presence of size-bias. J. Nonparametric Stat. 12(1), 41–51 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Walter, G.G.: Density estimation in the presence of noise. Stat. Probab. Lett. 41, 237–246 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations