On Frame Properties of Iterates of a Multiplication Operator

  • Zaur A. Kasumov
  • Aydin Sh. ShukurovEmail author


Dynamical sampling that is a relatively new research topic in applied harmonic analysis has attracted considerable attention in recent years. One of the central problems in dynamical sampling is investigation of frame properties for families of elements obtained by iterates of operators. Note that investigation of basicity properties of iterates of operators is problematic even in the case of well known “standard” operators. In this note we consider iterates of the multiplication operator \(T_\varphi x(t)=\varphi (t)x(t), x \in L_2(a,b)\) and show that it cannot form a frame for the space \(L_2(a,b)\).


Dynamical sampling operator orbit frame Schauder bases system of powers Lebesgue spaces 

Mathematics Subject Classification

42C15 46E30 46B25 46B15 



  1. 1.
    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space, vol. 1. Vishcha Shkola, Kharkov (1977). (in Russian)zbMATHGoogle Scholar
  2. 2.
    Aldroubi, A., Petrosyan, A.: Dynamical sampling and systems from iterative actions of operators (2016)Google Scholar
  3. 3.
    Aldroubi, A., Cabrelli, C., Molter, U., Tang, S.: Dynamical sampling. Appl. Harmon. Anal. Appl. 42(3), 378–401 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aldroubi, A., Cabrelli, C., Cakmak, A.F., Molter, U., Petrosyan, A.: Iterative actions of normal operators. J. Funct. Anal. 272(3), 1121–1146 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bogachev, V.I.: Measure Theory, vol. 1. Springer, Berlin (2007)CrossRefGoogle Scholar
  6. 6.
    Brodskii, M.S.: On a problem of I. M. Gelfand. Uspehi Mat. Nauk (N.S.) 12 2(74), 129–132 (1957). (Russian)Google Scholar
  7. 7.
    Cabrelli, C., Molter, U., Paternostro, V., Philipp, F.: Dynamical sampling on finite index sets (2017)Google Scholar
  8. 8.
    Christensen, O., Hasannasab, M., Philipp, F.: Frame Properties of Operator Orbits. arXiv:1804.03438 (2018)
  9. 9.
    Christensen, O., Hasannasab, M., Stoeva, D.: Operator representations of sequences and dynamical sampling. arXiv:1804.00077 (2018)
  10. 10.
    Christensen, O., Hasannasab, M.: Frame properties of systems arising via iterative actions of operators (2016)Google Scholar
  11. 11.
    Christensen, O.: An Introduction to Frames and Riesz Bases, Second expanded edn. Birkhäuser, Basel (2016)zbMATHGoogle Scholar
  12. 12.
    Christensen, O., Hasannasab, M.: Operator representations of frames: boundedness, duality, and stability. Integral Equ. Oper. Theory 88(4), 483–499 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Christensen, O., Hasannasab, M., Rashidi, E.: Dynamical sampling and frame representations with bounded operators. J. Math. Anal. Appl. 463(2), 634–644 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gelfand, I.M.: Several problems on the theory of functions of real variable; problem 17. Uspekhi Mat. Nauk 5, 233 (1938)Google Scholar
  15. 15.
    Natanson, I.P.: Theory of Functions of a Real Variable, vol. 1. Frederich Ungar Publishing Co., New York (1983)Google Scholar
  16. 16.
    Philipp, F.: Bessel orbits of normal operators. J. Math. Anal. Appl. 448(2), 767–785 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shukurov, A.Sh., Jabrailova, A.N.: On frames of the form \(\{\varphi ^n(t)\}_{n=-\infty }^{\infty }\) (2019)Google Scholar
  18. 18.
    Shukurov, A.Sh.: Addendum to “necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces”. Colloq. Math. 137(2), 297–298 (2014)Google Scholar
  19. 19.
    Shukurov, A.Sh.: Impossibility of power series expansion for continuous functions. Azerb. J. Math. 6(1), 122–125 (2016)Google Scholar
  20. 20.
    Shukurov, A.Sh.: Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces. Colloq. Math. 127(1), 105–109 (2012)Google Scholar
  21. 21.
    Shukurov, A.Sh.: The power system is never a basis in the space of continuous functions. Am. Math. Mon. 122(2), 137 (2015)Google Scholar
  22. 22.
    Singer, I.: Bases in Banach Spaces II. Springer, Berlin (1981)CrossRefGoogle Scholar
  23. 23.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsNAS of AzerbaijanBakuAzerbaijan
  2. 2.Department of MathematicsKhazar UniversityBakuAzerbaijan

Personalised recommendations