Existence and Multiplicity of Weak Positive Solutions to a Class of Fractional Laplacian with a Singular Nonlinearity

  • Xing WangEmail author
  • Li Zhang


This paper is devoted to the study of a class of fractional Laplacian with a singular nonlinearity. The purpose of this article is to give the existence and multiplicity of weak positive solutions by the combined effects of a superlinear and singular term. It is worth pointing out that the testing function in the definition of weak positive solutions does not need to have compact support in bounded domain. Hence the results of this paper are new even in the fractional Laplacian case.


Fractional Laplacian nondifferentiable functional existence and multiple 

Mathematics Subject Classification

35J25 47J30 46E35 



The authors are very grateful to the referees for their helpful suggestions and comments which have improved the paper.

Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.


This work is supported by the National Natural Science Foundation of China (Nos. 11801038, 11626185) and Natural Science Foundation of Shaanxi Provincial Department of Education (No. 16KJ1558). This work is also supported by the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2017JQ1011, 2018JQ1023).


  1. 1.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Giovanni, M.B., Vicentiu, D.R., Raffaella, S.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  4. 4.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007)zbMATHGoogle Scholar
  5. 5.
    Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 229, 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  7. 7.
    Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math 136(5), 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Priceton Mathematical Series, vol. 30. Princeton University Press, Princeton, NJ (1970)zbMATHGoogle Scholar
  9. 9.
    Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathèmatiques, No. 17, vol. 1. Dunod, Paris (2004)zbMATHGoogle Scholar
  10. 10.
    Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sun, Y.J., Wu, S.P., Long, Y.M.: Combined effects of singular and superlinear nonlinearities in some singular boundary value problems. J. Differ. Equ. 176, 511–531 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yao, H.T.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Papageorgiou, N.S., Radulescu, V.: Combined effects of singular and sublinear nonlinearities in some elliptic problems. Nonlinear Anal. 109, 236–244 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sun, Y.J., Li, S.J.: Some remarks on a superlinear-singular problem: existence for \(\lambda ^{*}\). Nonlinear Anal. 69, 2636–2650 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Y.J., Li, S.J.: A nonlinear elliptic equation with critical-exponent: estimates for extremal values. Nonlinear Anal. 69, 1856–1869 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, X., Zhao, L., Zhao, P.H.: Combined effects of singular and critical nonlinearities in elliptic problems. Nonlinear Anal. 87, 1–10 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, X., Zhao, P.H., Zhang, L.: The existence and multiplicity of classical positive solutions for a singular nonlinear elliptic problem with ang growth. Nonlinear Anal. 101, 37–46 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sun, Y.J., Wu, S.P.: An exact estimate result for a class of singular equations with critical exponents. J. Funct. Anal. 260, 1257–1284 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mukherjee, T., Sreenadh, K.: Critical growth fractional elliptic problem with singular nonlinearities. Preprint (2017).
  20. 20.
    Applebaum, D.: Lévy process-from probability to finance and quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)zbMATHGoogle Scholar
  21. 21.
    Garroni, A., Müller, S.: \(\Gamma \)-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36, 1943–1964 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fang, Y.: Existence, uniqueness of positive solution to a fractional Laplacians with singular nonlinearity. Mathematic. preprint (2014).
  23. 23.
    Sun, Y.J., Zhang, D.Z.: The role of the power 3 for elliptic equations with negative exponents. Calc. Var. Partial Differ. Equ. 49(3–4), 909–922 (2014)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Barrios, B., Bonis, I.D., Mara, M., Peral, I.: Semilinear problems for the fractional Laplacian with a singular nonlinearity. Open Math. 13, 390–407 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mukherjee, T., Sreenadh, K.: On Dirichlet problem for fractional p-Laplacian with singular nonlinearity. Adv. Nonlinear Anal. (2016). (in press)
  26. 26.
    Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mazya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 342, 2nd edn. Springer, Heidelberg (2011)Google Scholar
  29. 29.
    Musina, R., Nazarov, A.I.: Strong maximum principles for fractional Laplacians. Preprint (2017).
  30. 30.
    Del Pezzo, L.M., Quaas, A.: A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian. J. Differ. Equ. 263(1), 765–778 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ScienceXi’an University of TechnologyXi’anPeople’s Republic of China
  2. 2.School of ScienceChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations