Results in Mathematics

, 74:66 | Cite as

Correction to: Real Hypersurfaces in the Complex Hyperbolic Quadric with Parallel Ricci Tensor

  • Gyu Jong KimEmail author
  • Young Jin Suh



  1. 1.
    Berndt, J., Suh, Y.J.: Contact hypersurfaces in Kaehler manifold. Proc. AMS 23, 2637–2649 (2015)CrossRefGoogle Scholar
  2. 2.
    Besse, A.L.: Einstein Manifolds. Springer, Berlin (2008)zbMATHGoogle Scholar
  3. 3.
    Helgason, S.: Geometric Analysis on Symmetric Spaces, Mathematical Survey and Monographs, vol. 39, 2nd edn. American Mathematical Society, Providence (2008)CrossRefGoogle Scholar
  4. 4.
    Klein, S.: Totally geodesic submanifolds in the complex quadric. Differ. Geom. Appl. 26, 79–96 (2008)CrossRefGoogle Scholar
  5. 5.
    Klein, S., Suh, Y.J.: Contact real hypersurfaces in the complex hyperbolic quadric. Ann. Mate. Pura Appl.
  6. 6.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley Classics Library Ed., vol. II. Wiley-Interscience Publication, Hoboken (1996)Google Scholar
  7. 7.
    Reckziegel, H.: On the Geometry of the Complex Quadric: Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), pp. 302–315. World Scientific Publishing, River Edge, NJ (1995)Google Scholar
  8. 8.
    Suh, Y.J.: Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. Math. 281, 886–905 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Suh, Y.J.: Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow. Commun. Contemp. Math. 20, 1750031 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics EducationWoosuk UniversityWanju JeonbukRepublic of Korea
  2. 2.Department of Mathematics and RIRCM College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations