Results in Mathematics

, 74:59 | Cite as

Polynomials of Arithmetically Homogeneous Functions: Stability and Hyperstability

  • Dan M. DăianuEmail author
  • Cristina Mîndruţă


We give large classes of control functions that provide generalized stability, respectively hyperstability for difference equations that characterize polynomials of arithmetically homogeneous functions. We also give a new technique to study the generalized stability and hyperstability of Fréchet’s equation, technique that allows us to expand and refine some of the known results in literature.


Arithmetically homogeneous function h-polynomial Fréchet polynomial monomial stability hyperstability 

Mathematics Subject Classification

Primary 39B52 Secondary 39A70 39B82 47H10 



  1. 1.
    Albert, M., Baker, J.: Functions with bounded \(n\)th differences. Ann. Polon. Math. 43, 93–103 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brzdȩk, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Academic Press, Elsevier (2018)zbMATHGoogle Scholar
  3. 3.
    Brzdȩk, J., Ciepliński, K.: Hyperstability and superstability. Abstr. Appl. Anal. 2013, ID 401756 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dăianu, D.M.: Recursive procedure in the stability of Fréchet polynomials. Adv. Differ. Equ. 2014, 16 (2014)CrossRefGoogle Scholar
  5. 5.
    Dăianu, D.M.: A stability criterion for Fréchet’s first polynomial equation. Aequat. Math. 88(3), 233–241 (2014)CrossRefGoogle Scholar
  6. 6.
    Dăianu, D.M.: Fixed point approach to the stability of generalized polynomials. Fixed Point Theory 20(1), 135–156 (2019)Google Scholar
  7. 7.
    Dăianu, D.M., Mîndruţă, C.: Arithmetically homogeneous functions: characterizations, stability and hyperstability. Aequat. Math. 92(6), 1061–1077 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dăianu, D.M.: Taylor type formula with Fréchet polynomials. Aequat. Math. 92(4), 695–707 (2018). CrossRefzbMATHGoogle Scholar
  9. 9.
    Djoković, D.Ž.: A representation theorem for \(\left( X_{1}-1\right) \left( X_{2}-1\right) \cdots \left( X_{n}-1\right) \) and its applications. Ann. Polon. Math. 22, 189–198 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fréchet, M.: Une definition fonctionnelle des polynômes. Nouv. Ann. Math. 9, 145–182 (1909)zbMATHGoogle Scholar
  11. 11.
    Lijn, G.: Les polynômes abstraits. Bull. Sci. Math. 64, 55–80, 102–112, 183–198 (1940)Google Scholar
  12. 12.
    Marchoud, A.: Sur les dérivées et sur les différences des fonctions de variables réelles. J. Math. Pures Appl. T6(9), 337–426 (1927)Google Scholar
  13. 13.
    Prager, W., Schwaiger, J.: Stability of a functional equation for generalized polynomials. Aequat. Math. 90(1), 67–75 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsPolitehnica University of TimişoaraTimisoaraRomania
  2. 2.Department of InformaticsWest University of TimişoaraTimisoaraRomania

Personalised recommendations