Advertisement

Results in Mathematics

, 74:33 | Cite as

Real Hypersurfaces in the Complex Hyperbolic Quadric with Parallel Ricci Tensor

  • Gyu Jong Kim
  • Young Jin SuhEmail author
Article
  • 14 Downloads

Abstract

We introduce the notion of parallel Ricci tensor for real hypersurfaces in the complex hyperbolic quadric \({Q^m}^* = SO^{o}_{m,2}/SO_mSO_2\). According to the \(\mathfrak {A}\)-principal or the \(\mathfrak {A}\)-isotropic unit normal vector field N, we give a complete classification of real hypersurfaces in \({Q^m}^* = SO^{o}_{m,2}/SO_mSO_2\) with Ricci parallelism.

Keywords

Parallel Ricci tensor \(\mathfrak {A}\)-isotropic \(\mathfrak {A}\)-principal Kähler structure complex conjugation complex hyperbolic quadric 

Mathematics Subject Classification

Primary 53C40 Secondary 53C55 

Notes

Acknowledgements

The present authors would like to express their deep gratitude to the referee for his/her careful comments and suggestions throughout this manuscript. By virtue of his/her best efforts, we can make good expressions better than the previous one.

References

  1. 1.
    Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (2008)zbMATHGoogle Scholar
  2. 2.
    Berndt, J., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127, 1–14 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berndt, J., Suh, Y.J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137, 87–98 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berndt, J., Suh, Y.J.: Real hypersurfaces with isometric Reeb flow in complex quadrics. Int. J. Math. 24, 1350050 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berndt, J., Suh, Y.J.: Contact hypersurfaces in Kaehler manifold. Proc. AMS 23, 2637–2649 (2015)CrossRefGoogle Scholar
  6. 6.
    Helgason, S.: Geometric Analysis on Symmetric Spaces, the 2nd edn, vol. 39. Math. Survey and Monographs, Amer. Math. Soc. (2008)Google Scholar
  7. 7.
    Klein, S.: Totally geodesic submanifolds in the complex quadric. Differ. Geom. Appl. 26, 79–96 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Klein, S., Suh, Y.J.: Contact real hypersurfaces in the complex hyperbolic quadric, to appear in Ann. Mate. Pura Appl. 198 (2019)Google Scholar
  9. 9.
    Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Math. Birkhäuser, Basel (2002)Google Scholar
  10. 10.
    Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vol. II. A Wiley-Interscience Publ., Wiley Classics Library Ed., Hoboken (1996)Google Scholar
  11. 11.
    Kollross, A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Am. Math. Soc. 354, 571–612 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kimura, M.: Real hypersurfaces of a complex projective space. Bull. Aust. Math. Soc. 33, 383–387 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pérez, J.D., Suh, Y.J.: Real hypersurfaces of quaternionic projective space satisfying \({\nabla }_{U_i}R=0\). Differ. Geom. Appl. 7, 211–217 (1997)CrossRefGoogle Scholar
  14. 14.
    Pérez, J.D., Suh, Y.J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44, 211–235 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Reckziegel, H.: On the geometry of the complex quadric: Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995). World Sci. Publ. River Edge 1995, 302–315 (1995)Google Scholar
  16. 16.
    Smyth, B.: Differential geometry of complex hypersurfaces. Ann. Math. 85, 246–266 (1967)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Smyth, B.: Homogeneous complex hypersurfaces. J. Math. Soc. Jpn. 20, 643–647 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. R. Soc. Edinb. 142 A, 1309–1324 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Suh, Y.J.: Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. Appl. Math. 50, 645–659 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Suh, Y.J.: Real hypersurfaces in the complex quadric with Reeb parallel shape operator. Int. J. Math. 25, 1450059 (2014). 17ppMathSciNetCrossRefGoogle Scholar
  21. 21.
    Suh, Y.J.: Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. Math. 281, 886–905 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Suh, Y.J.: Real hypersurfaces in the complex quadric with harmonic curvature. J. Math. Pures Appl. 106, 393–410 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Suh, Y.J.: Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow. Commun. Contemp. Math. 20, 1750031 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Suh, Y.J., Hwang, D.H.: Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator. Ann. Mate. Pura Appl. 196, 1307–1326 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Suh, Y.J., Woo, C.: Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor. Math. Nachr. 287, 1524–1529 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics EducationWoosuk UniversityWanjuRepublic of Korea
  2. 2.Department of Mathematics and RIRCM College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations