Results in Mathematics

, 74:31 | Cite as

A note on the order derivatives of Kelvin functions

  • J. L. González-Santander


We calculate the derivative of the \(\mathrm {ber}_{\nu }\), \(\,\mathrm {bei} _{\nu }\), \(\mathrm {ker}_{\nu }\), and \(\,\mathrm {kei}_{\nu }\) functions with respect to the order \(\nu \) in closed-form for \(\nu \in \mathbb {R}\). Unlike the expressions found in the literature for order derivatives of the \( \mathrm {ber}_{\nu }\) and \(\,\mathrm {bei}_{\nu }\) functions, we provide much more simple expressions that are also applicable for negative integral order. The expressions for the order derivatives of the \(\mathrm {ker}_{\nu }\) and \(\,\mathrm {kei}_{\nu }\) functions seem to be novel. Also, as a by-product, we calculate some new integrals involving the \(\mathrm {ber}_{\nu }\) and \(\,\mathrm {bei}_{\nu }\) functions in closed-form.


Kelvin functions bessel functions generalized hypergeometric function meijer-G function 

Mathematics Subject Classification

33C10 33C20 33E20 



It is a pleasure to thank Prof. A. Apelblat for the literature and wise comments given to the author.


  1. 1.
    Thomson, W.: Ether, electricity, and ponderable matter. In: Mathematical and Physical Papers, vol. 3, pp. 484–515. Cambridge University Press, Cambridge (2011).
  2. 2.
    Russell, A.: The effective resistance and inductance of a concentric main, and methods of computing the ber and bei and allied functions. Philos. Mag. 17, 524–552 (1909)CrossRefGoogle Scholar
  3. 3.
    McLachlan, N.W.: Bessel Functions for Engineers, 2nd edn. Clarendon Press, Oxford (1961)zbMATHGoogle Scholar
  4. 4.
    Whitehead, C.S.: On the generalization of the functions ber x, bei x, ker x, kei x. Quart. J. Pure Appl. Math. 42, 316–342 (1911)zbMATHGoogle Scholar
  5. 5.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)zbMATHGoogle Scholar
  6. 6.
    Apelblat, A.: Integral representation of Kelvin functions and their derivatives with respect to the order. J. Appl. Math. Phys. 42, 708–714 (1991)MathSciNetzbMATHGoogle Scholar
  7. 7.
    De Micheli, E.: Integral representation for Bessel’s functions of the first kind and Neumann series. Results Math. 73(2), 61 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brychkov, Y.A.: Higher derivatives of the Bessel functions with respect to the order. Integr. Transf. Spec. Funct. 27, 566–577 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brychkov, Y.A.: Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  10. 10.
    González-Santander, J.L.: Closed-form expressions for derivatives of Bessel functions with respect to the order. J. Math. Anal. Appl. 466, 1060–1081 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gradsthteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, New York (2007)Google Scholar
  12. 12.
    Prudnikov, A.P., Brychov, Y.A., Marichev, O.I.: Integrals and Series, vol. 5, Inverse Laplace Transforms, vol. 5. Gordon Breach, New York (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ValenciaSpain

Personalised recommendations