Results in Mathematics

, 74:10 | Cite as

m-Generalized Lelong Numbers and Capacity Associated to a Class of m-Positive Closed Currents

  • Fredj ElkhadhraEmail author


In this paper we firstly define the m-generalized Lelong numbers of a m-positive closed current. Secondly, we associate a capacity to a given class of m-positive closed currents. The pluripolarity and the quasicontinuity of m-subharmonic functions with respect to such a capacity are investigated. Finally, we introduce the notion of m-generalized Lelong numbers of a given class of m-positive closed currents and we prove that these numbers can be expressed in terms of the capacity previously defined.


m-Subharmonic functions positive currents capacity 

Mathematics Subject Classification

32W50 32C30 31A15 



The author would like to thank the referee for his/her remarks and suggestions which helped to improve the presentation of the paper.


  1. 1.
    Abdullaev, B., Sadullaev, A.: Potential theory in the class of \(m\)-sh functions. Proc. Steklov Inst. Math. V279, 155–180 (2012)zbMATHGoogle Scholar
  2. 2.
    Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benali, A., Ghiloufi, N.: Lelong numbers of m-subharmonic functions. J. Math. Anal. Appl. 466, 1373–1392 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier Grenoble 55(5), 1735–1756 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dabbek, K., Elkhadhra, F.: Capacité associée à un courant positif fermé. Documenta Math 11, 469–486 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Demailly J.-P.: Complex analytic and differential geometry. Preprint (2009).
  7. 7.
    Dinew, S., Kolodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7(1), 227–244 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dhouib, A., Elkhadhra, F.: \(m\)-Potential theory associated to a positive closed current in the class of \(m\)-sh functions. Complex Var. Elliptic Equ. 61(7), 875–901 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Elkhadhra, F.: Lelong-Demailly numbers in terms of capacity and weak convergence for closed positive currents. AMSCI 33B(6), 1652–1666 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lu, H.-C.: A variational approach to complex Hessian equations in \(\mathbb{C}^n\). J. Math. Anal. Appl. 431, 228–259 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nguyen, N.-C.: Subsolution Theorem for the complex Hessian equation. Univ. Lag. Acta. Math. Fasciculus L 69–88 (2012)Google Scholar
  12. 12.
    Wan, D., Wang, W.: Complex Hessian operator and Lelong number for unbounded \(m\)-subharmonic functions. Potential Anal. 44, 53–69 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xing, Y.: Weak convergence of currents. Math. Z. 260, 253–264 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zeriahi, A.: Volume and capacity of sublevel sets of a Lelong class of psh functions. Indiana Univ. Math. J 50(1), 671–703 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Département de MathématiqueEcole Superieure des Sciences et de la Technologie de Hammam SousseHammam SousseTunisie

Personalised recommendations