Results in Mathematics

, 73:114 | Cite as

Continuous Projections onto Ideal Convergent Sequences

  • Paolo LeonettiEmail author


Let \({\mathcal {I}}\subseteq \mathcal {P}(\omega )\) be a meager ideal. Then there are no continuous projections from \(\ell _\infty \) onto the set of bounded sequences which are \({\mathcal {I}}\)-convergent to 0. In particular, it follows that the set of bounded sequences statistically convergent to 0 is not isomorphic to \(\ell _\infty \).


Meager ideal \({\mathcal {I}}\)-maximal almost disjoint family complementability asymptotic density zero sets \({\mathcal {I}}\)-convergent sequence 

Mathematics Subject Classification

Primary: 40A35 46B03 Secondary: 54A20 46B26 



The author is grateful to Tommaso Russo (Università degli Studi di Milano, IT) for suggesting Question 1 and Lemma 1.1.


  1. 1.
    Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Bartoszewicz, A., Głab, S., Wachowicz, A.: Remarks on ideal boundedness, convergence and variation of sequences. J. Math. Anal. Appl. 375(2), 431–435 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters Ltd., Wellesley (1995)CrossRefGoogle Scholar
  4. 4.
    Baumgartner, J.E.: Iterated forcing. Surveys in set theory. London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, pp. 1–59 (1983)Google Scholar
  5. 5.
    Farkas, B., Soukup, L.: More on cardinal invariants of analytic \(P\)-ideals. Comment. Math. Univ. Carolin. 50(2), 281–295 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Filipów, R., Tryba, J.: Ideal convergence versus matrix summability. Stud. Math. (to appear)Google Scholar
  7. 7.
    Hrušák, M.: Combinatorics of filters and ideals. Set theory and its applications. Contemp. Math., vol. 533. Am. Math. Soc., Providence, RI, pp. 29–69 (2011)Google Scholar
  8. 8.
    Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: \(\mathscr {I}\)-convergence and extremal \(\mathscr {I}\)-limit points. Math. Slovaca 55(4), 443–464 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lindenstrauss, J.: Mathematical notes: a remark concerning projections in summability domains. Am. Math. Mon. 70(9), 977–978 (1963)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sobczyk, A.: Projection of the space \((m)\) on its subspace \((c_0)\). Bull. Am. Math. Soc. 47, 938–947 (1941)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Talagrand, M.: Compacts de fonctions mesurables et filtres non mesurables. Stud. Math. 67(1), 13–43 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Whitley, R.: Mathematical notes: projecting \(m\) onto \(c_0\). Am. Math. Mon. 73(3), 285–286 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of StatisticsUniversità “L. Bocconi”MilanItaly

Personalised recommendations