Radii of Starlikeness and Convexity of a Product and Cross-Product of Bessel Functions

  • Árpád Baricz
  • Anikó Szakál
  • Róbert Szász
  • Nihat Yağmur
Article
  • 16 Downloads

Abstract

The reality of the zeros of the product and cross-product of Bessel and modified Bessel functions of the first kind is studied. As a consequence the reality of the zeros of two hypergeometric polynomials is obtained together with the number of the Fourier critical points of the normalized forms of the product and cross-product of Bessel functions. As an application some geometric properties of the normalized forms of the cross-product and product of Bessel and modified Bessel functions of the first kind are studied. For the cross-product and the product three different kind of normalization are considered and for each of the six functions tight lower and upper bounds are given for the radii of starlikeness and convexity, via Euler–Rayleigh inequalities. Necessary and sufficient conditions are also given for the parameters such that four from the six normalized functions are convex in the open unit disk.

Keywords

Bessel and modified Bessel functions of the first kind radius of starlikeness and convexity Laguerre–Pólya class of entire functions distribution of zeros of entire functions zeros of hypergeometric polynomials fourier critical points 

Mathematics Subject Classification

30D15 30C15 30C45 33C10 

References

  1. 1.
    Aktaş, I., Baricz, Á., Yağmur, N.: Bounds for the radii of univalence of some special functions. Math. Inequal. Appl. 20(3), 825–843 (2017)MathSciNetMATHGoogle Scholar
  2. 2.
    Al-Kharsani, H.A., Baricz, Á., Pogány, T.K.: Starlikeness of a cross-product of Bessel functions. J. Math. Inequal. 10(3), 819–827 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ashbaugh, M.S., Benguria, R.D.: On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78(1), 1–17 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baricz, Á., Dimitrov, D.K., Mező, I.: Radii of starlikeness and convexity of some \(q\)-Bessel functions. J. Math. Anal. Appl. 435, 968–985 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baricz, Á., Kupán, P.A., Szász, R.: The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 142(6), 2019–2025 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baricz, Á., Ponnusamy, S., Singh, S.: Cross-product of Bessel functions: monotonicity patterns and functional inequalities. Proc. Indian Sci. (Math. Sci.) (in press)Google Scholar
  7. 7.
    Baricz, Á., Singh, S.: Zeros of some special entire functions. Proc. Am. Math. Soc. 146(5), 2207–2216 (2018)Google Scholar
  8. 8.
    Baricz, Á., Szász, R.: The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 12(5), 485–509 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baricz, Á., Yağmur, N.: Geometric properties of some Lommel and Struve functions. Ramanujan J. 42(2), 325–346 (2017)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Baricz, Á., Yağmur, N.: Radii of starlikeness and convexity of a cross-product of Bessel functions. Ramanujan J. 44(3), 493–519 (2017)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brown, R.K.: Univalence of Bessel functions. Proc. Am. Math. Soc. 11(2), 278–283 (1960)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Brown, R.K.: Univalent solutions of \(W^{\prime \prime }+pW=0,\) Canad. J. Math. 14, 69–78 (1962)MathSciNetMATHGoogle Scholar
  13. 13.
    Brown, R.K.: Univalence of normalized solutions of \(W^{\prime \prime }(z)+p(z)W(z)=0,\) Int. J. Math. Math. Sci. 5, 459–483 (1982)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dimitrov, D.K., Ben Cheikh, Y.: Laguerre polynomials as Jensen polynomials of Laguerre–Pólya entire functions. J. Comput. Appl. Math. 233, 703–707 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2(1), 1–21 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    Ki, H., Kim, Y.O.: On the number of nonreal zeros of real entire functions and the Fourier–Pólya conjecture. Duke Math. J. 104(1), 45–73 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kreyszig, E., Todd, J.: The radius of univalence of Bessel functions. Ill. J. Math. 4, 143–149 (1960)MathSciNetMATHGoogle Scholar
  18. 18.
    Lorch, L.: Monotonicity of the zeros of a cross-product of Bessel functions. Methods Appl. Anal. 1(1), 75–80 (1994)MathSciNetMATHGoogle Scholar
  19. 19.
    Merkes, E.P., Robertson, M.S., Scott, W.T.: On products of starlike functions. Proc. Am. Math. Soc. 13, 960–964 (1962)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nehari, Z.: The Schwarzian derivative and schlicht functions. Bull. Am. Math. Soc. 55, 545–551 (1949)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  22. 22.
    Özer, S., Şengül, T.: Stability and transitions of the second grade Poiseuille flow. Phys. D 331, 71–80 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Robertson, M.S.: Schlicht solutions of \(W^{\prime \prime }+pW=0\). Trans. Am. Math. Soc. 76, 254–274 (1954)MathSciNetMATHGoogle Scholar
  24. 24.
    Runckel, H.J.: Zeros of entire functions. Trans. Am. Math. Soc. 143, 343–362 (1969)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)MATHGoogle Scholar
  26. 26.
    Wilf, H.S.: The radius of univalence of certain entire functions. Ill. J. Math. 6, 242–244 (1962)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Árpád Baricz
    • 1
    • 2
  • Anikó Szakál
    • 3
  • Róbert Szász
    • 4
  • Nihat Yağmur
    • 5
  1. 1.Department of EconomicsBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Institute of Applied MathematicsÓbuda UniversityBudapestHungary
  3. 3.University Research and Innovation CenterÓbuda UniversityBudapestHungary
  4. 4.Department of Mathematics and InformaticsSapientia Hungarian University of TransylvaniaTârgu-MureşRomania
  5. 5.Lalapasa mahYakutiyeTurkey

Personalised recommendations