Advertisement

Study of Generation and Underground Flow of Acid Mine Drainage in Waste Rock Pile in an Uranium Mine Using Electrical Resistivity Tomography

  • Matheus Felipe Stanfoca Casagrande
  • César Augusto MoreiraEmail author
  • Débora Andrade Targa
Article
  • 6 Downloads

Abstract

Mineral exploration is often associated with the generation of environmental liabilities, whose potential damages might imperil local water quality. An example of these environmental impacts is the acid mine drainage—AMD, caused by sulfides oxidation and production of acid and saline effluents. The analysis of critical areas with generation and spread of contamination plumes becomes more feasible due to the possibility to obtain geophysical models of water systems, especially to identify regions with accumulation of reactive minerals and preferential water flows. The rock-waste pile named BF-04 fits in this context of contamination, and it was studied based on the Electrical Resistivity Tomography technique, inversion models and isosurface models, providing conditions to recognize sulfide zones (> 10.1 mV/V), whereas chaotic high salt content underground flows, along several depths, were identified by low resistivity zones (< 75.8 Ω m). The complex behavior of groundwater flow in this kind of artificial granular aquifer is caused by its granulometric and lithologic heterogeneities, and compacted material. In addition, the results reveled a substantial water infiltration from Consulta creek, however the most critic zones for AMD generation are located at shallow levels where the waste rock material is more exposed to atmospheric O2 and meteoric water infiltration. The bedrock was not associated with significant low resistivity anomalies, which means that its contribution to AMD generation was considered relatively less important. The results will contribute to the environmental remediation management and also to demonstrate the potential applicability of geophysical methods in mining wastes.

Keywords

Sulfides contamination aquifer DC resistivity induced polarization 

Notes

Acknowledgements

The authors are thankful to São Paulo Research Foundation (FAPESP), for the financial support whereby process number 2018/14565-3 (Regular Project), the Applied Geology Department of UNESP—Rio Claro for the availability of the geophysical equipment and the Brazilian Nuclear Industries (Indústrias Nucleares do Brasil-INB) for the provided access to the study area.

References

  1. ABEM. (2012). Terrameter LS—Instruction manual (p. 122). Sundbyberg: ABEM Instrument AB.Google Scholar
  2. Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S., & Uhuegbu, C. C. (2011). Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles. International Journal of the Physical Sciences,6, 5623–5647.Google Scholar
  3. Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production,14(12), 1139–1145.CrossRefGoogle Scholar
  4. Alberti, H. L. C. (2017). Estudo hidroquímico e isotópico das águas subterrâneas impactadas pela drenagem ácida da mina de urânio—Osamu Utsumi, Planalto de Poços de Caldas (MG). Masters Dissertation—Universidade Estadual de Campinas, Campinas, p. 194.Google Scholar
  5. Anterrieu, O., Chouteau, M., & Aubertin, M. (2010). Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine. Bulletin of Engineering Geology and the Environment,69, 533–548.CrossRefGoogle Scholar
  6. Bania, G., & Cwiklik, M. (2013). 2D electrical resistivity tomography interpretation ambiguity—Example of field studies supported with analogue and numerical modelling. Geology, Geophysics & Environment,39(4), 331–339.CrossRefGoogle Scholar
  7. Belmonte-Jiménez, S. I., Jiménez-Castañeda, M. E., Pérez-Flores, M. A., Campos-Enríquez, J. O., Reyes-López, J. Á., & Salazar-Peña, L. (2012). Characterization of a leachate contaminated site integrating geophysical and hydrogeological information. Geofísica Internacional,51(4), 309–321.Google Scholar
  8. Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping groundwater contamination using dc resistivity and VLF geophysical methods. Geophysics,62(1), 80–86.CrossRefGoogle Scholar
  9. Bermejo, J. L., Sauck, W. A., & Atekwana, E. A. (1997). Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB. Ground Water Monitoring Remediation,17(4), 131–137.CrossRefGoogle Scholar
  10. Blowes. D. W. (1997). The environmental effects of mine wastes. In Proceedings of exploration 97: Fourth decennial international conference on mineral exploration (Vol. 4, 887–892). Toronto: Prospectors and Developers Association.Google Scholar
  11. Campaner, V. P., & Silva, W. L. (2009). Processos físico-químicos em drenagem ácida de mina em mineração de carvão. Quimica Nova,32(1), 146–152.CrossRefGoogle Scholar
  12. Campbell, D. L., Beanland, S. (2001). Spectral induced polarization measurements at the Carlisle mine dump (p. 11). New Mexico: U.S. Geological Survey Open-File Report, 01-363.Google Scholar
  13. Campbell, D. L., Fitterman, D. V. (2000). Geoelectrical methods for investigating mine dumps. In Fifth international conference on acid rock drainage (pp. 1513–1523). Denver: ICARD.Google Scholar
  14. Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics,71, 231–239.CrossRefGoogle Scholar
  15. Cipriani, M. (2002). Mitigação dos Impactos Sociais e Ambientais Decorrentes do Fechamento Definitivo de Minas de Urânio. Ph.D. Thesis—Universidade Estadual de Campinas—Instituto de Geociências, Campinas, p. 332.Google Scholar
  16. Delgado-Rodriguez, O., Florez-Hernandez, D., Amezcua-Allieri, M. A., Rosas-Molina, A., & Marin-Cordova, S. (2014). Joint interpretation of geoelectrical and volatile organic compounds data: A case study in a hydrocarbons contaminated urban site. Geofísica Internacional,53(2), 183–198.CrossRefGoogle Scholar
  17. Fagundes, J. R. T. (2005). Balanço hídrico do bota—fora BF4 da mina Osamu Utsumi, INB, como subsídio para projetos de remediação de drenagem ácida. MS Dissertation, Universidade Federal de Ouro Preto, Ouro Preto, p. 121.Google Scholar
  18. Fala, O., Aubertin, M., Molson. J., Bussière, B., Wilson, G. W., Chapuis, R. P., Martin, V. (2003). Numerical modeling of unsaturated flow in uniform and heterogeneous waste rock piles. In 6th international conference on acid rock drainage, Cairns.Google Scholar
  19. Fraenkel, M. O., Santos, R. C., Loureiro, F. E. V. L., Muniz, W. S. (1985). Jazida de Urânio no Planalto de Poços de Caldas—Minas gerais. In Departamento Nacional de Produção Mineral. Principais Depósitos Minerais do Brasil: Recursos Minerais Energéticos. Brasília: DNPM, 1, cap. 5, pp. 89–103.Google Scholar
  20. Franklin, M. R. (2007). Modelagem numérica do escoamento hidrológico e dos processos geoquímicos aplicados à previsão da drenagem ácida em uma pilha de estéril da mina de urânio de Poços de Caldas, MG. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, p. 358.Google Scholar
  21. Freitas, C. M., Silva, M. A., & Menezes, F. C. (2016). O desastre na barragem de mineração da Samarco—Fratura exposta dos limites do Brasil na redução de risco de desastres. Ciência e Cultura,68(3), 25–30.CrossRefGoogle Scholar
  22. Gray, N. F. (1997). Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology,30, 62–71.CrossRefGoogle Scholar
  23. Helene, L. P. I., Moreira, C. A., & Carrazza, L. P. (2016). Applied geophysics on a soil contaminated site by chromium of a tannery in Motuca (SP). Revista Brasileira de Geofísica,34, 309–317.CrossRefGoogle Scholar
  24. Holmes, D. C., Pitty, A. E., & Noy, D. J. (1992). Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites. Journal of Geochemical Exploration,45, 215–247.CrossRefGoogle Scholar
  25. Kearey, P., Brooks, M., Hill, I. (2002). An introduction to geophysical exploration. In Tradução de Maria Cristina Moreira Coelho (1st ed., p. 429). São Paulo: Oficina de Textos.Google Scholar
  26. Knodel, K., Lange, G., & Voift, H. J. (2007). Environmental geology—Handbook of field methods and case studies (p. 1357). Germany: Springer.Google Scholar
  27. Lacaz, F. A. C., Porto, M. F. S., & Pinheiro, T. M. M. (2016). Tragédias brasileiras contemporâneas: o caso do rompimento da barragem de rejeitos de Fundão/Samarco. Revista brasileira de saúde ocupacional,42(9), 1–12.Google Scholar
  28. Leite, J. S. M. (2010). Previsão de drenagem ácida por meio de testes estáticos do material do bota fora da mina de Osamu Utsumi—Caldas, MG. Masters Dissertation—Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Geologia, Ouro Preto, p. 59.Google Scholar
  29. Loke, M. H. A. (2010). Practical guide 2-D and 3-D surveys. In Electrical imaging surveys for environmental and engineering studies (p. 136).Google Scholar
  30. Loke, M. H., & Baker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophysical Prospecting,44, 131–152.CrossRefGoogle Scholar
  31. Lopes, L. M. N. (2016). The rupture of the Mariana dam and its social-environmental impacts. Sinapse Múltipla,5(1), 1–14.Google Scholar
  32. Lowrie, W. (2007). Fundamentals of geophysics (Segunda edição ed., p. 381). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Lowson, R. T. (1982). Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews,82(5), 461–497.CrossRefGoogle Scholar
  34. Merkel, R. H. (1972). The use of resistivity to delineate acid mine drainage in ground water. Ground Water,10(5), 38–42.CrossRefGoogle Scholar
  35. Milson, J. (2003). Field geophysics (p. 232). England: Wiley.Google Scholar
  36. Moraes, F. T., & Jiménez-Rueda, J. R. (2008). Fisiografia da região do planalto de Poços de Caldas, MG/SP. Revista Brasileira de Geociências,38(1), 196–208.CrossRefGoogle Scholar
  37. Moreira, A. C., & Braga, A. C. O. (2009). Aplicação de métodos geofísicos no monitoramento de área contaminada sob atenuação natural. Revista Brasileira de Engenharia Sanitária e Ambiental,14(2), 257–264.CrossRefGoogle Scholar
  38. Moreira, A. C., Carrara, A., Helene, L. P. I., Hansen, M. A., Malagutti Filho, W., & Dourado, J. C. (2017). Electrical resistivity tomography (ERT) applied in the detection of inorganic contaminants in suspended aquifer in Leme City (Brazil). Revista Brasileira de Geofísica,35(3), 213–225.CrossRefGoogle Scholar
  39. Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica Internacional,55(2), 119–129.Google Scholar
  40. Moreira, C. A., Paes, R. A. S., Ilha, L. M., & Bittencourt, J. C. (2018). Reassessment of copper mineral occurrence through electrical tomography and pseudo 3D modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure and Applied Geophysics,175, 1431–1445.Google Scholar
  41. Mussett, A. E., & Khan, M. A. (2000). Looking into the earth: an introduction to geological geophysics (p. 470). New York: Cambridge University Press.CrossRefGoogle Scholar
  42. Naidoo, S. (2017). The global context of AMD. In: Acid mine drainage in South Africa, Springer briefs in environmental science (pp. 9–17).Google Scholar
  43. Pastore, E. L., & Mioto, J. A. (2000). Impactos ambientais em mineração com ênfase à Drenagem Mineira Ácida e transporte de contaminantes. Revista Solos e Rochas,23(1), 33–56.Google Scholar
  44. Pichtel, J. R., & Dick, W. A. (1991). Sulfur, iron and solid phase transformations during biological oxidation of pyritic mine spoil. Solid Biology & Biochemistry,23, 101–107.CrossRefGoogle Scholar
  45. Power, C., Tsourlos, P., Ramasamy, M., Nivorlis, A., & Mkanda Wire, M. (2018). Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada. Journal of Applied Geophysics,150, 40–51.CrossRefGoogle Scholar
  46. Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir modeling (p. 449). New York: Oxford University Press.Google Scholar
  47. Santos, S. F. (2017). Caracterização de ocorrência de cobre por meio de levantamento estrutural e geofísico em faixa de dobramentos na região de Caçapava do Sul (RS). Masters Dissertation—Universidade Paulista Júlio de Mesquita Filho, IGCE, Rio Claro, p. 79.Google Scholar
  48. Targa, D. A., Moreira, C. A., Camarero, P. L., Casagrande, M. F. S., & Alberti, H. L. C. (2019). Structural analysis and geophysical survey for hydrogeological diagnosis in uranium mine, Poços de Caldas (Brazil). SN Applied Sciences,1(299), 1–12.Google Scholar
  49. Thedeschi, M. F., Vieira, P. L. N. C. R., Nomo, T. A. (2015). Projeto fronteiras de Minas Gerais: Folha Caldas/Poços de Caldas, escala 1:100.000. Universidade Federal de Minas Gerais, p. 78.Google Scholar
  50. Veloso, D. I. K., Moreira, C. A., & Côrtes, A. R. P. (2015). Integration of geoelectrical methods in the diagnostic of a diesel contaminated site in Santa Ernestina (SP, Brazil). Revista Brasileira de Geofísica,33(4), 667–676.Google Scholar
  51. Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofísica Internacional,55(2), 107–117.Google Scholar
  52. Vogelsang, D. (1995). Environmental geophysics: A practical guide (p. 173). Berlin: Springer.CrossRefGoogle Scholar
  53. Yuval, D., & Oldenburg, W. (1996). DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments. Journal of Applied Geophysics,34, 187–198.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geosciences and Exact Sciences Institute (IGCE)São Paulo State University (UNESP)Rio ClaroBrazil

Personalised recommendations