Advertisement

Temporal Variation of Soil Gas Radon Associated with Seismic Activity: A Case Study in NW Greece

  • C. PapachristodoulouEmail author
  • K. Stamoulis
  • K. Ioannides
Article

Abstract

Soil gas radon concentrations were continuously monitored from November 2016 to May 2018, close to an active fault zone in the area of Ioannina (Northwestern Greece) that gave rise to intense seismic swarms with magnitudes up to 5.3 on the Richter scale, during October 2016. Meteorologic parameters (soil and air temperature, atmospheric pressure, wind speed and rainfall) were simultaneously obtained, and their contribution to radon fluctuations was examined by partial correlation and cross-correlation analysis. Soil temperature and atmospheric pressure were found to be the parameters controlling radon concentrations, and their effect was reduced using multiple linear regression analysis. During the monitoring period, 11 spike-like anomalies were identified in the residual radon time series using the 2σ deviation criterion. The duration of the anomalies varied from < 1 day to approximately 5 days. Earthquakes of local magnitudes ML > 2.5, occurring within a distance of 100 km from the monitoring site, were collected and filtered by applying Dobrovolsky’s radius approach. Most of the observed radon anomalies were likely associated with seismic events, and the precursor time ranged roughly from 2 to 15 days.

Keywords

Radon time series meteorologic parameters earthquake precursor Greece 

Notes

Acknowledgements

The authors express their gratitude to the two anonymous reviewers for their valuable comments and suggestions that improved the manuscript.

References

  1. Arora, B. R., Kumar, A., Walia, V., Yang, T. F., Fu, C.-C., Liu, T.-K., et al. (2017). Assesment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: A prerequisite to identify earthquake precursors. Journal of Asian Earth Sciences.  https://doi.org/10.1016/j.jseaes.2017.06.033.CrossRefGoogle Scholar
  2. Aubouin, J. (1959). Contribution à l’étude géologique de la Grèce, septentrionale: les confins de l’ Epire et de la Thessalie. Annales Géologiques des Pays Helléniques, 10, 1–483.Google Scholar
  3. Aumento, F. (2002). Radon tides on an active volcanic island: Terceira, Azores. Geofísica Internacional, 41(4), 499–505.Google Scholar
  4. Barkat, A., Ali, A., Hayat, U., Crowley, Q. G., Rehman, K., Siddique, N., et al. (2018). Time series analysis of soil radon in Northern Pakistan: Implications for earthquake forecasting. Applied Geochemistry, 97, 197–208.CrossRefGoogle Scholar
  5. Boccaletti, M., Caputo, R., Mountrakis, D., Pavlides, S., & Zouros, N. (1997). Paleoseismicity of the Souli fault, Epirus, Western Greece. Journal of Geodynamics, 24, 117–127.CrossRefGoogle Scholar
  6. Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3–4), 371–396.CrossRefGoogle Scholar
  7. Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117(5), 1025–1044.CrossRefGoogle Scholar
  8. Etiope, G., & Martinelli, G. (2002). Migration of carrier and trace gases in the geosphere: an overview. Physics of the Earth and Planetary Interiors, 129(3–4), 185–204.CrossRefGoogle Scholar
  9. Fleischer, R. L. (1981). Dislocation model for radon response to distant earthquakes. Geophysical Research Letters, 8(5), 477–480.CrossRefGoogle Scholar
  10. Friedmann, H. (2012). Radon in earthquake prediction research. Radiation Protection Dosimetry, 149(2), 177–184.CrossRefGoogle Scholar
  11. Fu, C.-C., Walia, V., Yang, T. F., Lee, L.-C., Liu, T.-K., Chen, C.-H., et al. (2017a). Preseismic anomalies in soil-gas radon associated with 2016 M6.6 Meinong earthquake, Southern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 787–798.CrossRefGoogle Scholar
  12. Fu, C.-C., Yang, T. F., Chen, C.-H., Lee, L.-C., Wub, Y.-M., Liu, T.-K., et al. (2017b). Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. Journal of Asian Earth Sciences, 149, 64–77.CrossRefGoogle Scholar
  13. Fu, C.-C., Yang, T. F., Tsai, M. C., Lee, L. C., Liu, T. K., Walia, V., et al. (2017c). Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chemical Geology, 469, 163–175.CrossRefGoogle Scholar
  14. Fu, C.-C., Yang, T. F., Walia, V., Liu, T.-K., Lin, S. J., Chen, C.-H., et al. (2009). Variations of soil–gas composition around the active Chihshang fault in a plate suture zone, eastern Taiwan. Radiation Measurements, 44(9–10), 940–944.CrossRefGoogle Scholar
  15. Ghosh, D., Deb, A., Sahoo, S. R., Subrata, H., & Rosalima, S. (2011). Radon as seismic precursor: new data with well water of Jalpaiguri, India. Natural Hazards, 58(3), 877–889.CrossRefGoogle Scholar
  16. Ghosh, D., Deb, A., & Sengupta, R. (2009). Anomalous radon emission as precursor of earthquake. Journal of Applied Geophysics, 69(2), 67–81.CrossRefGoogle Scholar
  17. Gregorič, A., Zmazek, B., Dzeroski, S., Torkar, D., & Vaupotič, J. (2012). Radon as an earthquake precursor: methods for detecting anomalies. In S. D’Amico (Ed.), Earthquake research and analysis: Statistical studies, observations and planning (pp. 179–196). Rijeca: InTech. (ISBN: 978-953-51-0134-5).Google Scholar
  18. Hartmann, J., & Levy, J. K. (2005). Hydrogeological and gasgeochemical earthquake precursors—A review for application. Natural Hazards, 34(3), 279–304.CrossRefGoogle Scholar
  19. Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., et al. (1995). Microseismicity and strain pattern in northwestern Greece. Tectonics, 14(4), 773–785.CrossRefGoogle Scholar
  20. Hauksson, E. (1981). Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. Journal of Geophysical Research, 86(B10), 9397–9410.CrossRefGoogle Scholar
  21. Hauksson, E., & Goddard, J. G. (1981). Radon earthquake precursor studies in Iceland. Journal of Geophysical Research, 86(B8), 7037–7054.CrossRefGoogle Scholar
  22. Igarashi, G., & Wakita, H. (1990). Groundwater radon anomalies associated with earthquakes. Tectonophysics, 180(2–4), 237–254.CrossRefGoogle Scholar
  23. Immè, G., & Morelli, D. (2012). Radon as earthquake precursor. In S. D’Amico (Ed.), Earthquake research and analysis: Statistical studies, observations and planning (pp. 143–160). Rijeca: InTech. (ISBN: 978-953-51-0134-5).Google Scholar
  24. Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2014). Analysis of soil radon data in earthquake precursory studies. Annals of Geophysics, 57(5), S0544.  https://doi.org/10.4401/ag-6513.CrossRefGoogle Scholar
  25. Karakitsios, V. (2005). The Ioannina karstic plateau and its water management. In Proceedings of the 7th Hellenic Hydrogeological Conference, Athens, 2005 (pp. 171–181) (in Greek).  https://doi.org/10.13140/2.1.4464.0009.
  26. King, C. Y. (1986). Gas geochemistry applied to earthquake prediction. An overview. Journal of Geophysical Research, 91(B12), 12269–12281.CrossRefGoogle Scholar
  27. King, G., Sturdy, D., & Whitney, J. (1993). The landscape geometry and active tectonics of northwest Greece. Geological Society of America Bulletin, 105(2), 137–161.CrossRefGoogle Scholar
  28. Kristiansson, K., & Malmqvist, L. (1982). Evidence for nondiffusive transport of 222Rn in the ground and a new physical model for the transport. Geophysics, 47(10), 1444–1452.CrossRefGoogle Scholar
  29. Kumar, A., Walia, V., Arora, B., Yang, T., Lin, S.-J., Fu, C.-C., et al. (2015). Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Natural Hazards, 79(1), 317–330.CrossRefGoogle Scholar
  30. Lindmark, A., & Rosen, B. (1985). Radon in soil gas—Exhalation tests and in situ measurements. The Science of the Total Environment, 45, 397–404.CrossRefGoogle Scholar
  31. Matsumoto, N. (1992). Regression analysis of anomalous changes of ground water level due to earthquakes. Geophysical Research Letters, 19(12), 1193–1196.CrossRefGoogle Scholar
  32. Megumi, K., & Mamuro, T. (1973). Radon and thoron exhalation from the ground. Journal of Geophysical Research, 78(11), 1804–1808.CrossRefGoogle Scholar
  33. Mentes, G., & Eper-Pápai, I. (2015). Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary. Journal of Environmental Radioactivity, 149, 64–72.CrossRefGoogle Scholar
  34. Műllerová, M., Holý, K., & Bulko, M. (2014). Daily and seasonal variations in radon activity concentration in the soil air. Radiation Protection Dosimetry, 160(1–3), 222–225.CrossRefGoogle Scholar
  35. Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M., & Akashe, B. (2003). Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network. Applied Radiation and Isotopes, 58(2), 269–273.CrossRefGoogle Scholar
  36. Ntokos, D. (2017a). Neotectonic—Geomorphological study of Epirus, Northwestern Greece and Compiling of Neotectonic Map, by use of Geographic Information Systems, Ph.D. Thesis, National Technical University of Athens, (in Greek). http://dspace.lib.ntua.gr/handle/123456789/44623.
  37. Ntokos, D. (2017b). Synthesis of literature and field work data leading to the compilation of a new geological map—A review of geology of northwestern Greece. International Journal of Geosciences, 8(2), 205–236.CrossRefGoogle Scholar
  38. Ntokos, D. (2018). Neotectonic study of Northwestern Greece. Journal of Maps, 14(2), 178–188.CrossRefGoogle Scholar
  39. Oh, Y. H., & Kim, G. (2015). A radon-thoron isotope pair as a reliable earthquake precursor. Scientific Reports, 5, 13084.  https://doi.org/10.1038/srep13084.CrossRefGoogle Scholar
  40. Papazachos, B., & Papazachou, K. (1989). The earthquakes of Greece. Thessaloniki: Ziti editions. (in Greek).Google Scholar
  41. Pavlides, S., Ganas A., Chatzipetros, A., Sboras, S., Valkaniotis, S., Papathanasiou, G., et al. (2017). Geological and seismotectonic characteristics of the broader area of the October 15, 2016, earthquake (Ioannina, Greece). Geophysical Research Abstracts, 19, EGU2017-18135-1, EGU General Assembly.Google Scholar
  42. Pavlides, S., Ganas, A., Papathanasiou, G., Valkaniotis, S., Thomaidou, E., Georgiadis, G., et al. (2016). Geological-seismotectonic study of the wider area of Ioannina (seismic region of the earthquake October 15, 2016). Tectonics & Structural Geology Committee of the Geological Society of Greece. 1st Tectonics and Structural Geology Meeting, Athens 6 December 2016. Available online at: http://www.geosociety.gr/images/ImeridaTektonikis_2016/1st_TSG_Meeting_Proceedings_small.pdf. Accessed 17 April 2018.
  43. Pavlides, S., Valkaniotis, S., & Chatzipetros, A. (2008). Seismically capable faults in Greece and their use in seismic hazard assessment. In 4th International Conference on Earthquake Geotechnical Engineering, 25–28 June 2007, Thessaloniki, Proceedings, paper n. 1609.Google Scholar
  44. Petraki, E., Nikolopoulos, D., Panagiotaras, D., Cantzos, D., Yannakopoulos, P., et al. (2015). Radon-222: A potential short-term earthquake precursor. Journal of Earth Science and Climatic Change, 6, 282.  https://doi.org/10.4172/2157-7617.1000282.CrossRefGoogle Scholar
  45. Piersanti, A., Cannelli, V., & Galli, G. (2016). The Pollino 2012 seismic sequence: clues from continuous radon monitoring. Solid Earth, 7, 1303–1316.CrossRefGoogle Scholar
  46. Ramola, R. C., Prasad, Y., Prasad, G., Kumar, S., & Choubey, V. M. (2008). Soil–gas radon as seismotectonic indicator in Garhwal Himalaya. Applied Radiation and Isotopes, 66(10), 1523–1530.CrossRefGoogle Scholar
  47. Richon, P., Perrier, F., Pili, E., & Sabroux, J.-C. (2009). Detectability and significance of 12 h barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide concentration in an underground tunnel. Geophysical Journal International, 176(3), 683–694.CrossRefGoogle Scholar
  48. Riggio, A., & Santulin, M. (2015). Earthquake forecasting: a review of radon as seismic precursor. Bollettino di Geofisica Teorica ed Applicata, 56(2), 95–114.Google Scholar
  49. Schumann, R. R., Gundersen, L. C. S., & Tanner, A. B. (1994). Geology and occurrence of radon. In N. L. Nagda (Ed.), Radon: Prevalence, measurements, health risks and control, ASTM Manual Series: MNL 15 (pp. 83–96). Philadelphia: American Society for Testing and Materials.Google Scholar
  50. Schumann, R. R., Owen, D. E., & Asher-Bolinder, S. (1989). Weather factors affecting soil–gas radon concentrations at a single site in the semiarid western US. In Proceedings of the 1988 EPA Symposium on Radon and Radon Reduction Technology, Vol. 2, Publication EPA/600/9-89/006B (pp. 3.1–3.13).Google Scholar
  51. Sikder, I. U., & Munakata, T. (2009). Application of rough set and decision tree for characterization of premonitory factors of low seismic activity. Expert Systems with Applications, 36(1), 102–110.CrossRefGoogle Scholar
  52. Singh, M., Ramola, R. C., Singh, S., & Virk, H. S. (1988). The influence of meteorological parameters on soil–gas radon. Journal of Association of Exploration Geophysicists, 9(2), 85–90.Google Scholar
  53. Tanner, A. B. (1964). Radon migration in the ground: A review. In J. A. S. Adams & W. M. Lowder (Eds.), The natural radiation environment (pp. 161–190). Chicago: University of Chicago Press.Google Scholar
  54. Tomer, A. (2016). Radon as an earthquake precursor: A review. International Journal of Science, Engineering and Technology, 4(6), 815–822.Google Scholar
  55. Torkar, D., Zmazek, B., Vaupotič, J., & Kobal, I. (2010). Application of artificial neural networks in simulating radon levels in soil gas. Chemical Geology, 270(1–4), 1–8.CrossRefGoogle Scholar
  56. Toutain, J.-P., & Baubron, J.-C. (1999). Gas geochemistry and seismotectonics: A review. Tectonophysics, 304(1–2), 1–27.CrossRefGoogle Scholar
  57. Tselentis, G.-A., Sokos, E., Martakis, N., & Serpetsidaki, A. (2006). Seismicity and seismotectonics in Epirus, Western Greece: Results from a microearthquake survey. Bulletin of the Seismological Society of America, 96(5), 1706–1717.CrossRefGoogle Scholar
  58. Vaupotic, J., Riggio, A., Santulin, M., Zmazek, B., & Kobal, I. (2010). A radon anomaly in soil gas at Cazzaso, NE Italy, as a precursor of an ML = 5.1 earthquake. Nukleonika, 55(4), 507–511.Google Scholar
  59. Virk, H. S., Sharma, A. K., & Sharma, N. (2002). Radon and helium monitoring in some thermal springs of North India and Bhutan. Current Science, 82(12), 1423–1424.Google Scholar
  60. Walia, V., Yang, T. F., Lin, S. J., Hong, W. L., Fu, C. C., Wen, K. L., et al. (2009). Continuous temporal soil gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiation Measurements, 44(9–10), 934–939.CrossRefGoogle Scholar
  61. Walia, V., Yang, T. F., Lin, S. J., Kumar, A., Fu, C. C., Chiu, J. M., et al. (2013). Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiation Measurements, 50, 154–159.CrossRefGoogle Scholar
  62. Woith, H. (2015). Radon earthquake precursor: A short review. European Physical Journal Special Topics, 224(4), 611–627.CrossRefGoogle Scholar
  63. Zmazek, B., Todorovski, L., Džeroski, S., Vaupotič, J., & Kobal, I. (2003). Application of decision trees to the analysis of soil radon data for earthquake prediction. Applied Radiation and Isotopes, 58(6), 697–706.CrossRefGoogle Scholar
  64. Zmazek, B., Živčić, M., Todorovski, L., Džeroski, S., Vaupotič, J., & Kobal, I. (2005). Radon in soil gas: How to identify anomalies caused by earthquakes. Applied Geochemistry, 20(6), 1106–1119.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations