Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 12, pp 5291–5313 | Cite as

Mapping of Coda-Wave Attenuation and Its Frequency Dependency Over Eastern Indian Shield

  • Rashmi Singh
  • Subham Sharma
  • Supriyo Mitra
  • Prosanta Kumar KhanEmail author
Article
  • 114 Downloads

Abstract

The study area comprises two tectonic blocks namely, the Chotanagpur microplate and the Singhbhum microplate. Waveform data of 112 local earthquakes of magnitude MW ≥ 2.5 were considered for the present analysis. Coda Q (QC) for each event at eight different central frequencies (1–14 Hz) and four different coda windows was estimated using back-projection algorithm. The average Q0 (QC at 1 Hz) and η (exponent) values were regionalized by projecting each value in selected square grid of dimension 0.1° × 0.1°. Back-projection algorithm was used for inversion of QC, and the final values were computed after ten iterations when the residual error was reduced to acceptable level. Inversion was stabilized by a nine-point spatial smoothening Gaussian filter to compute the QC values for each frequency and subsequently, combined values of Q0 and η were also computed. The final power law equation of the coda wave attenuation for the concerned region was found to be QC = (336.38 ± 16.50)f(0.83±0.036). Q0 varies from 180 to 255, 270 to 360, 297 to 386 and 340 to 420, and η vary from 0.9 to 1.02, 0.79 to 0.89, 0.79 to 0.88, and 0.79 to 0.86 for 30, 35, 40 and 45 s coda windows. Increase in Q0 and decrease in η values with increase of coda window length shows the depth dependency of seismic wave attenuation at 1 Hz frequency. The central part, surrounding the receiver, lying at the junction of the Chotanagpur and the Singhbhum tectonic provinces, documents lower Q0 and higher η values, and presumably caused by more heterogeneities present in the area. The higher concentration of lower magnitude earthquakes in this area support this observation. The mapping values of attenuation can be utilized for hazard assessment of the area.

Keywords

Coda-wave attenuation frequency dependence tomography time lapse Eastern Indian Shield 

Notes

Acknowledgements

First author is thankful to Mr. Raj Kumar Prasad for providing the waveform data. Authors are thankful to both the anonymous reviewers for their valuable comments and suggestions, which has improved manuscript greatly. First author is also thankful to Mr. Prateek Mondal for his necessary support during computation of the parameters. First and fourth authors are grateful to the Ministry of Human Resource Development and University Grants Commission, Government of India for necessary financial support to complete the present work.

Supplementary material

24_2019_2284_MOESM1_ESM.docx (452 kb)
Supplementary material 1 (DOCX 451 kb)
24_2019_2284_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 31 kb)
24_2019_2284_MOESM3_ESM.docx (36 kb)
Supplementary material 3 (DOCX 35 kb)

References

  1. Acharyya, S. K., Gupta, A., & Orihashi, Y. (2010a). New U-Pb zircon ages from Palaeo-Mesoarchaean TTG gneisses of the Singhbhum Craton, eastern India. Geochemical Journal,44(2), 81–88.CrossRefGoogle Scholar
  2. Acharyya, S. K., Gupta, A., & Orihashi, Y. (2010b). Neoarchaean Palaeoproterozoic stratigraphy of the Dhanjori basin, Singhbhum craton, Eastern India: And recording of a few U-Pb zircon dates from its basal part. Journal of Asian Earth Sciences,39(6), 527–536.CrossRefGoogle Scholar
  3. Aggarwal, S. K., & Khan, P. K. (2016). QLg tomography in Gujarat, Western India. Physics and Chemistry of the Earth,95, 135–149.CrossRefGoogle Scholar
  4. Aki, K. (1969). Analysis of Seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research,74(2), 615–631.CrossRefGoogle Scholar
  5. Aki, K. (1980a). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics of the Earth and Planetary Interiors,21(1), 50–60.CrossRefGoogle Scholar
  6. Aki, K. (1980b). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research: Solid Earth,85(B11), 6496–6504.CrossRefGoogle Scholar
  7. Aki, K. (1981). Source and scattering effects on the spectra of small local earthquakes. Bulletin of the Seismological Society of America,71(6), 1687–1700.Google Scholar
  8. Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation and scattering effects. Journal of Geophysical Research,80(23), 3322–3342.CrossRefGoogle Scholar
  9. Akinci, A., Taktak, A. G., & Ergintav, S. (1994). Attenuation of coda waves in Western Anatolia. Physics of the Earth and Planetary Interiors,87(1–2), 155–165.CrossRefGoogle Scholar
  10. Bapat, A., Kulkarni, R. C., & Guha, S. K. (1983). Catalogue of Earthquakes in India and neighbourhood from historical period up to 1979. Roorkee: Indian society of Earthquake Technology.Google Scholar
  11. Bilham, R., Bendick, R., & Wallace, K. (2003). Flexure of the Indian plate and intraplate earthquakes. Proceedings of the Indian Academy of Sciences Earth and Planetary Sciences,112(3), 315–329.Google Scholar
  12. Chandra, U. (1977). Earthquakes of Peninsular India—a seismotectonic study. Bulletin of the Seismological Society of America,67(5), 1387–1413.Google Scholar
  13. Chun, K. Y., West, G. F., Kokoski, R. J., & Samson, C. (1987). A novel technique for measuring Lg attenuation: Results from eastern Canada between 1 and 10 Hz. Bulletin of the Seismological Society of America,77(2), 398–419.Google Scholar
  14. Dasgupta, S., Mukhopadhyay, M., & Nandy, D. R. (1987). Active transverse features in the central portion of the Himalaya. Tectonophysics,136(3–4), 255–264.Google Scholar
  15. Dasovic, I., Herak, M., & Herak, D. (2012). Attenuation of coda waves in the contact zone between the Dinarides and the Adriatic Microplate. Studia Geophysica et Geodaetica,56(1), 231–247.CrossRefGoogle Scholar
  16. Dunn, J. A., & Dey, A. K. (1942). The geology and petrology of Eastern Singhbhum and surrounding areas. Memoirs of the Geological Survey of India,69(2), 281–456.Google Scholar
  17. Fadime, S. (2011). Estimation of Coda Wave Attenuation in the East Anatolia Fault Zone, Turkey. Pure and applied Geophysics,169(7), 1189–1204.Google Scholar
  18. Frohlich, C., & Pulliam, J. (1999). Single-station location of seismic events: A review plea for more research. Physics of the Earth and Planetary Interiors,113, 277–291.CrossRefGoogle Scholar
  19. Ghose, N. C., & Chatterjee, N. (2008). Petrology, tectonic setting and source of dykes and related magmatic bodies in Chotanagpur gneissic complex, eastern India. In R. K. Srivastava, C. Sivaji, & N. V. Chalapathi Rao (Eds.), Indian Dyke: geochemistry, geophysics and geochronology (pp. 471–493). New Delhi: Narosa Publishing House Pvt Ltd.Google Scholar
  20. Ghose, N. C., & Mukherjee, D. (2000). Chotanagpur gneissgranulite complex, Eastern India—a kaleidoscope of global events. In A. N. Trivedi, B. C. Sarkar, N. C. Ghose, & Y. R. Dhar (Eds.), Geology and mineral resources of Bihar and Jharkhand, Platinum Jubilee Commemoration Volume (pp. 33–58). Patna: Indian School of Mines, Institute of Geoexploration and Environment, Monograph 2.Google Scholar
  21. Gupta, S. C., & Kumar, A. (2002). Seismic wave attenuation characteristics of three Indian regions. A comparative study. Current Science,82(4), 407–413.Google Scholar
  22. Gupta, I. N., & McLaughin, K. L. (1987). Attenuation of ground motions in the Eastern United States. Bulletin of the Seismological Society of America,77(2), 366–383.Google Scholar
  23. Gupta, S., Mohanty, W. K., Mandal, A., & Misra, S. (2014). Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India. Geoscience Frontiers,5(1), 17–24.CrossRefGoogle Scholar
  24. Gupta, S. C., Singh, V. N., & Kumar, A. (1995). Attenuation of coda waves in the Garhwal Himalaya, India. Physics of the Earth and Planetary Interiors,87(3–4), 247–253.CrossRefGoogle Scholar
  25. Hasegawa, H. S. (1985). Attenuation of Lg waves in the Canadian shield. Bulletin of the Seismological Society of America,75(6), 1569–1582.Google Scholar
  26. Havskov, J., Kvamme, L. B., & Bungum H. (1986). Attenuation of seismic waves in the Jan Mayen island area. Marine Geophysical Researches, 8(1), 39–47.CrossRefGoogle Scholar
  27. Havskov, J., Malone, S., McClury, D., & Crosson, R. (1989). Coda-Q for the state of Washington. Bulletin of the Seismological Society of America,79(4), 1024–1038.Google Scholar
  28. Havskov, J., & Ottemoller, L. (2003). SEISAN: The earthquake analysis softwares for Windows, Solaris and Linux, Version 8.0. Institute of Solid Earth Physics: University of Bergen, Norway.Google Scholar
  29. Hellweg, M., Spudich, P., Fletcher, J. B., & Baker, L. M. (1995). Stability of coda Q in the region of Parkfield, California: View from the U.S. geological survey Parkfield dense seismograph array. Journal of Geophysical Research,100(B2), 2089–2102.CrossRefGoogle Scholar
  30. Humphreys, E., & Clayton, R. W. (1988). Adaptation of back projection tomography to seismic travel time problems. Journal of Geophysical Research,93(B2), 1073–1085.CrossRefGoogle Scholar
  31. Hwang, H. J., & Mitchell, B. (1987). Shear velocities, Qβ, and the frequency dependence of Qβ in stable and tectonically active regions from surface wave observations. Geophysical Journal of the Royal Astronomical Society banner,90(3), 575–613.CrossRefGoogle Scholar
  32. Ibàñez, J. M., Pezzo, E. D., De Miguel, F., Herriaz, M., Alguacie, G., & Morales, J. (1990). Depth dependent seismic attenuation in the Granada zone (Southern Spain). Bulletin of the Seismological Society of America,80(5), 1232–1244.Google Scholar
  33. Jin, A., & Aki, K. (1988). Spatial and Temporal correlation between coda Q and seismicity in China. Bulletin of the Seismological Society of America,78(2), 741–769.Google Scholar
  34. Jin, A., & Aki, K. (1989). Spatial and temporal correlation between coda Q-1 and seismicity and its physical mechanism. Journal of Geophysical Research,94(B10), 14041–14059.CrossRefGoogle Scholar
  35. Kayal, J. R., Srivastava, V. K., Bhattacharya, S. N., Khan, P. K., & Chatterjee, R. (2009). Source parameters and focal mechanisms of local earthquakes: Single broadband observatory at ISM Dhanbad. Journal of the Geological Society of India,74, 413–419.CrossRefGoogle Scholar
  36. Kayal, J. R., Srivastava, V. K., Kumar, P., Chatterjee, R., & Khan, P. K. (2011). Evaluation of Crustal and Upper Mantle Structures Using Receiver Function Analysis: ISM Broadband Observatory Data. Journal of Geological Society of India,78(1), 76–80.CrossRefGoogle Scholar
  37. Khan, P. K., Bhukta, K., & Tarafder, G. (2015). Coda Q in Eastern Indian shield. Acta Geodaetica et Geophysica,51(2), 333–346.CrossRefGoogle Scholar
  38. Kumar, N., Parvez, I. A., & Virk, H. S. (2005). Estimation of Coda wave attenuation for NW Himalayan region using local earthquakes. Physics of the Earth and Planetary Interiors,151(3–4), 243–258.CrossRefGoogle Scholar
  39. Kumar, C. H. P., Sarma, C. S. P., Shekar, M., & Chadha, R. K. (2007). Attenuation studies based on local earthquake coda waves in the southern Indian peninsular shield. Natural Hazards,40(3), 527–536.CrossRefGoogle Scholar
  40. Kvamme, L. B., & Havskov, J. (1989). Q in Southern Norway. Bulletin of the Seismological Society of America,79(5), 1575–1588.Google Scholar
  41. Li, B.-J., Qin, J.-Z., Qian, X.-D., & Ye, J.-Q. (2004). The coda attenuation of the Yao’an area in Yunnan Province. Acta Seismologica Sinica, 17(1), 47–53.CrossRefGoogle Scholar
  42. Mahadevan, T. M. (2002). Geology of Bihar and Jharkhand. Geological Society of India, 60(1), 258–314.Google Scholar
  43. Mahmoud, M. Y., Mitra, A. K., Dhar, R., Sarkar, S., & Mandal, N. (2008). Repeated emplacement of syntectonic pegmatites in Precambrian granite gneisses: Indication of pulsating brittle-ductile rheological transitions. In R. K. Srivastava (Ed.), Indian Dykes: Geochemistry, geophysics, and geochronology (pp. 495–510). New Delhi: Narosa Publishing House Pvt. Ltd.Google Scholar
  44. Mak, S., Chan, L. S., Chandler, A. M., & Koo, R. C. H. (2004). Coda Q estimates in the Hong Kong Region. Journal of Asian Earth Science,24(1), 127–136.CrossRefGoogle Scholar
  45. Mandal, H. S., Khan, P. K., & Shukla, A. K. (2013). Shear Wave attenuation characteristics over the Central India Tectonic Zone and its surroundings. Journal of Asian Earth Sciences,73(5), 440–451.CrossRefGoogle Scholar
  46. Mandal, P., & Rastogi, B. K. (1998). A frequency-dependent relation of coda QC for Koyna-Warna region, India. Pure and Applied Geophysics,153(1), 163–177.CrossRefGoogle Scholar
  47. Mayor, J., Calvet, M., Margerin, L., Vanderhaeghe, O., & Traversa, P. (2016). Crustal structure of the Alps as seen by attenuation tomography. Earth and Planetary Science Letters,439, 71–80.CrossRefGoogle Scholar
  48. Mazumder, R., Van Loon, A. J., Mallik, L., Reddy, S. M., Arima, M., Altermann, W., Eriksson, P. G. & De, S. (2012). Mesoarchaean-Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: A synthesis. In R. Mazumder, & D. Saha (Eds.), Palaeoproterozoic of India, Geological Society of London (Vol. 365, pp. 31–49). Geological Society.Google Scholar
  49. Mitchell, B. J. (1995). Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Reviews of Geophysics,33(4), 441.CrossRefGoogle Scholar
  50. Mukhopadhyay, J., Beukes, N. J., Armstrong, R. A., Zimmermann, U., Ghosh, G., & Medda, R. A. (2008). Dating the oldest Greenstone in India: A 3.51 Ga precise U-Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton. The Journal of Geology,116(5), 449–461.CrossRefGoogle Scholar
  51. Ottemöller, L., & Havskov, J. (1999). SeisNet: A general purpose virtual seismi network. Seismological Research Letters,70(5), 522–528.CrossRefGoogle Scholar
  52. Parvez, I. A., Sutar, A. K., Mridula, M., Mishra, S. K., & Rai, S. S. (2008). Coda Q estimates in the Andaman Islands using local earthquakes. Pure and Applied Geophysics,165(9–10), 1861–1878.CrossRefGoogle Scholar
  53. Paul, A., Gupta, S. C., & Pant, C. C. (2003). Coda Q estimates for Kumaun Himalaya. Journal of Earth System Science,112(4), 569–576.CrossRefGoogle Scholar
  54. Pujades, L., Canas, J. A., Egozcue, J. J., Puigvi, M. A., Pous, J., Gallart, J., et al. (1991). Coda Q distribution in the Iberian Peninsula. Geophysical Journal International,100(2), 285–301.CrossRefGoogle Scholar
  55. Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America,74(4), 1149–1166.Google Scholar
  56. Pulli, J. J., & Aki, K. (1981). Attenuation of seismic waves in the lithosphere: Comparison of active and stable areas. In J. E. Beavers (Ed.), Earthquakes and earthquake engineering: The Eastern United States (pp. 129–141). Ann Arbor: Michigan, Ann Arbor Science Publishers Inc.Google Scholar
  57. Rahimi, H., & Hamzehloo, H. (2008). Lapse time and frequency-dependent attenuation of coda waves in the Zagros continental collision zone in Southwestern Iran. Journal of Geophysics and Engineering,5(2), 173–185.CrossRefGoogle Scholar
  58. Rahimi, H., Motaghi, K., Mukhopadhyay, S., & Hamzehloo, H. (2010). Variation of coda wave attenuation in the Alborz region and central Iran. Geophysical Journal International,181(3), 1643–1654.Google Scholar
  59. Rautin, T. G., & Khalturin, V. I. (1978). The use of the coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America,68(4), 923–948.Google Scholar
  60. Roberts, R. G., Christoffersson, A., & Cassidy, F. (1989). Real time events detection, phase identification and source location estimation using single station component seismic data and a small PC. Geophysical Journal International,97(3), 471–480.CrossRefGoogle Scholar
  61. Roecker, S. W., Tucker, B., King, J., & Hartzfield, D. (1982). Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bulletin of the Seismological Society of America,72(1), 129–149.Google Scholar
  62. Rovelli, A. (1982). On the frequency dependence of Q in Friuli from short period digital records. Bulletin of the Seismological Society of America,72(6A), 2369–2372.Google Scholar
  63. Ruud, B. O., Husebye, E. S., Ingate, S. F., & Christoffersen, A. (1988). Event location at any distance using seismic data from a single, three-component station. Bulletin of the Seismological Society of America,78(1), 308–325.Google Scholar
  64. Sarkar, A. N. (1982). Precambrian tectonic evolution of Eastern India: a model of converging microplates. Tectonophysics,86(4), 363–397.CrossRefGoogle Scholar
  65. Sarkar, S. N., & Saha, A. K. (1977). Present status of the Precambrian stratigraphy, tectonics and geochronology of Singhbhum, Keonjhar, Mayurbhanj region, Eastern India. Indian Journal of Earth Sciences, S. Ray Volume, 37–66.Google Scholar
  66. Sato, H. (1977). Energy propagation including scattering effects single isotropic scattering approximation. Journal of Physics of the Earth,25(1), 27–41.CrossRefGoogle Scholar
  67. Sato, H., & Fehler, M. (1998). Seismic wave propagation and scattering in the heterogeneous earth (pp. 1–308). New York: AIP Press/Springer.CrossRefGoogle Scholar
  68. Scherbaum, F., & Kisslinger, C. (1985). Coda Q in the Adak seismic zone. Bulletin of the Seismological Society of America,75(2), 615–620.Google Scholar
  69. Sharma, B., Gupta, A. K., Devi, D. K., Kumar, D., Teotia, S. S., & Rastogi, B. K. (2008). Attenuation of high frequency seismic waves in Kachchh region, Gujarat, India. Bulletin of the Seismological Society of America,98(5), 2325–2340.CrossRefGoogle Scholar
  70. Sharma, B., Kumar, D., Teotia, S. S., Rastogi, B. K., Gupta, A. K., & Prajapati, S. (2012). Attenuation of coda waves in the Saurashtra region, Gujarat (India). Pure and Applied Geophysics,169(1–2), 89–100.CrossRefGoogle Scholar
  71. Shin, T. C., & Herrmann, R. B. (1987). Lg attenuation and source studies using 1982 Miramichi data. Bulletin of the Seismological Society of America,77(2), 384–397.Google Scholar
  72. Singh, C., Basha, S. K., Shekar, M., & Chadha, R. K. (2012). Spatial variation of coda wave attenuation in the Southern Indian Shield and its implications. Geologica Acta,10(3), 309–318.Google Scholar
  73. Singh, S. K., Garcia, D., Pacheco, J. F., Valenzula, R., Bansal, B. K., & Dattatrayam, R. S. (2004). Q of the Indian Shield. Bulletin of the Seismological Society of America,94(4), 1564–1570.CrossRefGoogle Scholar
  74. Singh, D. D., Govoni, A., & Bragato, P. L. (2001). Coda Qc attenuation and source parameter analysis in Friuli (NE Italy) and its vicinity. Pure and Applied Geophysics, 158(9–10), 1737–1761.Google Scholar
  75. Singh, S. K., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research,88(B1), 527–538.CrossRefGoogle Scholar
  76. Singh, S. K., Ordaz, M., Dattatrayam, R. S., & Gupta, H. K. (1999). A Spectral Analysis of the 21 May 1997 Jabalpur India earthquake (Mw = 5.8) and estimated of ground motion from future earthquakes in the Indian Shield region. Bulletin of the Seismological Society of America,89(6), 1620–1630.Google Scholar
  77. Tait, J., Zimmermann, U., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J., et al. (2011). Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton. Geological Magazine,148(2), 340–347.CrossRefGoogle Scholar
  78. Thirunavukarasu, A., Kumar, A., & Mitra, S. (2016). Lateral variation of seismic attenuation in Sikkim Himalaya. Geophysical Journal International,208(1), 257–268.CrossRefGoogle Scholar
  79. Tuve, T., Bianco, F., Ibàñez, J., Patanè, D., Pezzo, E. D., & Bottari, A. (2006). Attenuation study in the Straits of Messina area (southern Italy). Tectonophysics,421(3–4), 173–185.CrossRefGoogle Scholar
  80. Udìas, A. (1999). Principles of seismology (p. 47). Cambridge: Cambridge University Press, The Edinburgh Building.Google Scholar
  81. Valdiya, K. S. (1976). Himalaya transverse faults and their parallelism with subsurface structures of north Indian planes. Tectonophysics,32(3), 353–386.CrossRefGoogle Scholar
  82. Van Eck, T. (1988). Attenuation of coda waves in the Dead Sea region. Bulletin of the Seismological Society of America,78(2), 770–779.Google Scholar
  83. Woodgold, C. R. D. (1990). Estimation of Q in eastern Canada using coda waves. Bulletin of the Seismological Society of America,80(2), 411–429.Google Scholar
  84. Woodgold, C. R. D. (1994). Coda Q in the Charlevoix, Quebec, region: lapse-time dependence and spatial and temporal comparisons. Bulletin of the Seismological Society of America,84(4), 1123–1131.Google Scholar
  85. Wu, R. S., & Aki, K. (1988). Multiple scattering and energy transfer of seismic waves—separation of scattering effect from intrinsic attenuation, II, application of the theory to Hindu-Kush Region. Pure Applied Geophysics,128(1–2), 49–80.CrossRefGoogle Scholar
  86. Xie, J., & Mitchell, B. (1990). A back-projection method for imaging large-scale lateral variation of Lg coda Q with application to continental Africa. Geophysical Journal International,100(2), 161–181.CrossRefGoogle Scholar
  87. Zelt, B. C., Dotzev, N. T., Ellis, R. M., & Roger, G. C. (1999). Coda Q in southwestern British Columbia. Bulletin of the Seismological Society of America,89(4), 1083–1093.Google Scholar
  88. Zhang, T. Z., Ma, Y. S., & Huang, R. L. (1998). A single-station coda solution for source attenuation and site factors. Acta Seismologica Sinica,11(2), 163–170.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied GeophysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Department of Earth SciencesIndian Institute of Science, Education and ResearchMohanpurIndia

Personalised recommendations