Pure and Applied Geophysics

, Volume 176, Issue 12, pp 5363–5375 | Cite as

Analysis of the Physical Integrity of Earth Dams from Electrical Resistivity Tomography (ERT) in Brazil

  • Pedro Lemos CamareroEmail author
  • César Augusto Moreira
  • Henrique Garcia Pereira


Dams are structures that barrier rivers and streams for a variety of purposes. The constant maintenance of these structures is essential, since a possible accident can lead to damage of catastrophic proportions. In November 2015 in the city of Mariana, Minas Gerais (MG), Brazil, a tailings dam burst and spilled 56 million cubic meters of tailings. In addition to victimize 19 people, the event caused material, economic and environmental damage—it is considered the largest environmental disaster of Brazil. This research presents a cheap and quickly applied alternative for investigation of seepage of water in earth dams, built with distinct embankment materials—one dam composed of predominantly silt and clay soil and the other predominantly composed of sandy soil. The research methods used were: geotechnical tests as gradation test, permeability test with the Guelph permeameter method and the application of the (DC) resistivity geophysical method from the electrical resistivity tomography (ERT) technique in Wenner array. Three ERT lines were positioned parallel to the longitudinal axis at each dam. The data are presented in 2D and 3D geophysical images with electrical resistivity values modeled. Based on the physical principle of electrolytic conduction, i.e., decrease in electrical resistance in materials or siliceous minerals in moisture conditions compared to the material in the dry state, the results revealed low-resistivity zones restricted to some points, associated with water infiltration in the transverse direction. The results indicate saturation restricted to some points and low permeability, at the present time, an installation of piping processes.


Internal erosion geophysics dams electrical resistivity tailings 



  1. ABEM. (2012). Terrameter LS–instruction manual (p. 122). Sundbyberg: ABEM Instrument AB.Google Scholar
  2. Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S., & Uhuegbu, C. C. (2011). Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles. International Journal of the Physical Science,6, 5623–5647.Google Scholar
  3. Al-Fares, W. (2011). Contribution of the geophysical methods in characterizing the water leakage in Afamia B dam, Syria. Journal of Applied Geophysics,75(3), 464–471.CrossRefGoogle Scholar
  4. Asfahani, J., Radwan, Y., & Layyous, I. (2010). Integrated geophysical and morphotectonic survey of the impact of ghab extensional tectonics on the Qastoon Dam, Northwestern Syria. Pure and Applied Geophysics,167(3), 323–338.CrossRefGoogle Scholar
  5. Assumpção, M., Marza, V., Barros, L., Chimpliganond, C., Soares, J., Carvalho, J., et al. (2002). Reservoir-induced seismicity in Brazil. Pure and Applied Geophysics,159(1–3), 597–617.CrossRefGoogle Scholar
  6. Attwa, M., & El-Shinawi, A. (2017). An integrative approach for preliminary environmental engineering investigations amidst reclaiming desert-land: a case study at East Nile Delta, Egypt. Environmental Earth Science,76, 304–322.CrossRefGoogle Scholar
  7. Bedrosian, P. A., Burton, B. L., Powers, M. H., & Minsley, B. J. (2012). Geophysical investigations of geology and structure at the Mathis Creek Dam, Truckee, California. Journal of Applied Geophysics,77(1–2), 7–20.CrossRefGoogle Scholar
  8. Bonelli, S. (2013). Erosion in geomechanics applied to dams and levees. Hoboken: Wiley.CrossRefGoogle Scholar
  9. Burenkova, V. V. (1993). Assessment of suffosion in non-cohesive and graded soils. In J. Brauns, M. Heibaum, & U. Schuler (Eds.), Filters in geotechnical and hydraulic engineering (pp. 357–360). Rotterdam: Balkema.Google Scholar
  10. Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics,71(6), 231–239.CrossRefGoogle Scholar
  11. Côrtes, A. R. P., Moreira, C. A., Veloso, D. I. K., Vieira, L. B., & Bergonzoni, F. A. (2016). Geoelectrical prospecting for a copper-sulfide mineralization in the Camaquã sedimentary basin, Southern Brazil. Geofísica Internacional,55(3), 107–117.Google Scholar
  12. CPRM. (2003). Geologia, tectônica e recursos minerais do Brasil: texto, mapas and SIG. Brasília: CPRM—Serviço Geológico do Brasil.Google Scholar
  13. Degroot-Hedlin, C., & Constable, S. (1990). Occam`s inversion to generate smooth, two-dimensional models form magnetotelurric data. Geophysics,55(12), 1613–1624.CrossRefGoogle Scholar
  14. Edwards, L. S. A. (1977). A modified pseudosection for resistivity and induced polarization. Geophysics,42(5), 1020–1036.CrossRefGoogle Scholar
  15. Eyles, C. H., Eyles, N., & Franca, A. B. (1993). Glaciation and tectonics in an active intracratonic basin: the Late Paleozoic Itararé Group, Paraná Basin, Brazil. Sedimentology,40(1), 1–25.CrossRefGoogle Scholar
  16. Foster, M., Fell, R., & Spanngle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal,37(5), 1000–1024.CrossRefGoogle Scholar
  17. Galarowski, T. (1976). New observations of the present-day suffosion(piping) processes in the Bereznica catchment basin in the Bieszczady Mountains (The East Carpathians). Studia Geomorphologica Carpatho-Balcanica (Krakow),10, 115–122.Google Scholar
  18. Gélis, C., Noble, M., Cabrera, J., Penz, S., Chauris, H., & Cushing, E. M. (2015). Ability of high-resolution resistivity tomography to detect fault and fracture zones: Application to the tournemire experimental platform of, France. Pure and Applied Geophysics,173, 573–589.CrossRefGoogle Scholar
  19. Gélis, C., Revil, A., Cushing, E. M., Jougnot, D., Lemeille, F., Cabrera, J., et al. (2010). Potential of electrical resistivity tomography to detect fault zones in limestone and argillaceous formations in the experimental platform of Tournemire, France. Pure and Applied Geophysics,167, 1405–1418.CrossRefGoogle Scholar
  20. Hamdan, H., Andronikidis, N., Kritikakis, G., Economou, N., Agioutanis, Z., Schilizzi, P., et al. (2014). Contribution of electrical tomography methods in geotechnical investigations at Mavropigi lignite open pit mine, Northern Greece. Environmental Earth Sciences,72(5), 1589–1598.CrossRefGoogle Scholar
  21. Höyng, D., D’Affonseca, F. M., Bayer, P., Oliveira, E. G., Perinotto, J. A. J., Reis, F., et al. (2013). High-resolution aquifer analog of fluvial-aeolian sediments of the Guarani aquifer system. Environmental Earth Sciences,71(7), 3081–3094.CrossRefGoogle Scholar
  22. IBAMA. (2015). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais. Accessed 21 Oct 2017.
  23. Karastathis, V. K., Karmis, P. N., Drakatos, G., & Stavrakakis, G. (2002). Geophysical methods contributing to the testing of concrete dams. Application at the Marathon Dam. Journal of Applied Geophysics,50(3), 247–260.CrossRefGoogle Scholar
  24. Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration. Hoboken: Wiley.Google Scholar
  25. Khalil, M. A., Bobst, A., & Mosolof, J. (2018). Utilizing 2D electrical resistivity tomography and very low frequency electromagnetics to invistigate the hydrogeology of natural cold springs near Virginia City, Southwest Montana. Pure Applied Geophysics. Scholar
  26. Loh, C. H., & Wu, T. S. (1996). Identification of Fei-Tsui arch dam from both ambient and seismic response data. Soil Dynamics and Earthquake Engineering, 15(7), 465–483.Google Scholar
  27. Loke, M. H., & Baker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by Qausi-Newton Method. Geophysical Prospecting,44(1), 131–152.CrossRefGoogle Scholar
  28. Machado, F. B., Nardy, A. J. R., Melo, R. P., Oliveira, M. A. F., & Squisato, E. (2005). As rochas intrusivas da formação serra geral na porção leste da bacia do paraná no estado de são paulo: aspectos petrográficos e geoquímicos—resultados preliminares. Geociências,24(1), 5–17.Google Scholar
  29. Malagutti Filho, W., Braga, A. C. O., Elis, V. R., & Dourado, J. C. (1999). Estudos de minibarragens: exemplo de aplicação de técnicas geofísicas. Geociências,18(1), 53–67.Google Scholar
  30. Mastrocicco, M., Vignoli, G., Colombani, N., & Abu Zeid, N. (2010). Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environmental Earth Sciences,61(2), 311–322.CrossRefGoogle Scholar
  31. Medina, F., & Domínguez, J. (1989). Boundary elements for the analysis of the seismic response of dams including dam water foundation interaction effects. Engineering Analysis with Boundary Elements,6(3), 152–157.CrossRefGoogle Scholar
  32. Milani, E. J., & Ramos, V. A. (1998). Orogenias paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. Geociências,28(4), 473–484.CrossRefGoogle Scholar
  33. Minsley, B.J., Burton, B.L., Ikard, S., Powers, M.H. (2011). Geophysical investigations at Hidden Dam, Raymond, California: Summary of fieldwork and data analysis. Open File Report 2010–2013. United States Geological Survey. Accessed 22 Nov 2018.
  34. Moreira, C. A., Helene, L. P. I., Nogara, P., & Ilha, L. M. (2018). Analysis of leaks from geomembrane in a sanitary landfill through models of electrical resistivity tomography in South Brazil. Environmental Earth Sciences,77, 7. Scholar
  35. Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica Internacional,55(2), 119–129.Google Scholar
  36. Nasri, B., Fouché, O., & Ramier, D. (2014). Monitoring infiltration under a real on-site treatment system of domestic wastewater and evaluation of soil transfer function (Paris Baisn, France). Environmental Earth Sciences,73(11), 7435–7444.CrossRefGoogle Scholar
  37. Oh, S., & Sun, C. G. (2007). Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam. Environmental Geology,54, 31–42.CrossRefGoogle Scholar
  38. Osazuwa, I. B., & Chinedu, A. D. (2008). Seismic refraction tomography imaging of high-permeability zones beneath an earthen dam, in Zaria area, Nigeria. Journal of Applied Geophysics,66(1–2), 44–58.CrossRefGoogle Scholar
  39. Ozcan, N. T., Ulusay, R., & Isik, N. S. (2013). A study on a geotechnical characterization and stability of downstream slope of a tailings dam to improve its storage capacity (Turkey). Environmental Earth Sciences,69(6), 1871–1890.CrossRefGoogle Scholar
  40. Richards, K. S., & Reddy, K. R. (2007). Critical appraisal of piping phenomena in earth dams. Bulletin of Engineering Geology and the Environment,66(4), 381–402.CrossRefGoogle Scholar
  41. Schneider, R. L., Muhlmann, H., Tommasi, E., Medeiros, R. A., Daemon, R. F., & Nogueira, A. A. (1974). Revisão estratigráfica da Bacia do Paraná. Brazilian Congress of Geology,1, 41–65.Google Scholar
  42. Sjödahl, P., Dahlin, T., & Johansson, S. (2005). Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden. Environmental Geology,49(2), 267–273.CrossRefGoogle Scholar
  43. Tanchev, L. (2014). Dams and appurtenant hydraulic structures. Boca Raton: CRC Press.Google Scholar
  44. Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofísica Internacional,55(2), 107–117.Google Scholar
  45. Wei, Z., Yin, G., Wan, L., & Li, G. (2016). A case study on a geotechnical investigation of drainage methods for hightening a tailing dam. Environmental Earth Sciences,75, 106. Scholar
  46. Yilmaz, S., & Koksoy, K. (2017). Electrical resistivity imaging and dye tracer test for the estimation of water leakage paths from reservoir of Akdegirmen Dam in Afyonkarahisar. Turkey. Environmental Earth Sciences,76, 829. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Science and Technology Institute (ICT)Univ. Federal de Alfenas (UNIFAL)Poços De CaldasBrazil
  2. 2.Department of Applied Geology (DGA), Geosciences and Exact Sciences Institute (IGCE)Univ. Estadual Paulista (UNESP)Rio ClaroBrazil
  3. 3.Post Graduation in GeologyUniv. Federal do Paraná (UFPR)Centro CuritibaBrazil

Personalised recommendations