Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 12, pp 5315–5335 | Cite as

Reflection-Waveform Inversion Regularized with Structure-Oriented Smoothing Shaping

  • Gang Yao
  • Nuno V. da Silva
  • Di WuEmail author
Article
  • 118 Downloads

Abstract

Restricted by the limited length of the receiver arrays, estimating the seismic properties of deep targets requires inverting reflection data. Reflection-waveform inversion (RWI) utilizes reflection data to recover the background velocity. RWI splits the Earth model into a long-wavelength background velocity and short-wavelength reflectors. Because of the limited apertures of reflection data illuminating targets, and the trade-off between the depth of reflectors and the average velocity above the reflectors, RWI is inherently ill-posed and contains a large null space. One manifestation of the ill-posedness is the existence of characteristic artificial blob-shaped or column-like anomalies in the velocity models estimated with RWI. That erroneous background velocity, which still fits the travel time of reflection arrivals in the recorded data, can lead to inaccurate velocity models and distorted migration images in the subsequent processes. In order to mitigate those artifacts and improve the conditioning of RWI, we incorporate a piece of prior information into RWI, i.e. slow property variation along geological structures. This prior information is expressed mathematically as structure-oriented smoothing. We achieved this smoothing by solving an anisotropic diffusion equation with a finite-difference method. Thus, we formulated a method for RWI regularized with structure-oriented smoothing shaping by alternating the following three steps: building temporary reflectors, updating background velocity, and solving the diffusion equation. We successfully tested this scheme on the Marmousi model and a modified overthrust model. The results show that the regularized RWI yields a stable and accurate background velocity, and it is more effective than conventional Tikhonov regularization approaches. The estimated background model leads to a high-quality final velocity model when used as an initial model in conventional full-waveform inversion.

Keywords

Full-waveform inversion reflection-waveform inversion structure-oriented smoothing shaping regularization diffusion equation 

Notes

Acknowledgements

The authors are grateful to the National Key Research and Development Program of China (No. 2017YFC1500303), NSFC (Grant Nos. 41504106, 41630209), NSF (Grant No. EAR-1547228), Science Foundation of China University of Petroleum, Beijing (No. 2462018BJC001), and the sponsors of the FULLWAVE consortium for supporting this research. The authors would like to thank the editor, Professor C. Farquharson, and two anonymous reviewers for their comments and suggestions, which helped to improve and clarify the manuscript significantly. Finally, the authors would also like to express their gratitude to Dr. J. Cao for the discussion on Tikhonov regularization.

References

  1. Aghamiry, H., Gholami, A. & Operto, S. (2018). Hybrid Tikhonov + total-variation regularization for imaging large-contrast media by full-waveform inversion. SEG technical program expanded abstracts, pp. 1253–1257.  https://doi.org/10.3997/2214-4609.20130415.
  2. Alkhalifah, T. (2015). Scattering-angle based filtering of the waveform inversion gradients. Geophysical Journal International,200(1), 363–373.  https://doi.org/10.1093/gji/ggu379.CrossRefGoogle Scholar
  3. Aminzadeh, F., Burkhard, N., Kunz, T., Nicoletis, L., & Rocca, F. (1995). 3-D Modeling Pproject: third report. The Leading Edge,14(2), 125–128.  https://doi.org/10.1190/1.1437102.CrossRefGoogle Scholar
  4. Beydoun, W. B., & Tarantola, A. (1988). First Born and Rytov approximation: modeling and inversion conditions in a canonical example. Journal of the Acoustical Society of America,83(3), 1045–1055.  https://doi.org/10.1121/1.396537.CrossRefGoogle Scholar
  5. Brossier, R., Operto, S., & Virieux, J. (2009). Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics,74(6), WCC105–WCC118.  https://doi.org/10.1190/1.3215771.CrossRefGoogle Scholar
  6. Bunks, C., Saleck, F., Zaleski, S., & Chavent, G. (1995). Multiscale seismic waveform inversion. Geophysics,60(5), 1457–1473.  https://doi.org/10.1190/1.1443880.CrossRefGoogle Scholar
  7. da Silva, N. V., & Yao, G. (2018). Wavefield reconstruction inversion with a multiplicative cost function. Inverse Problems,34(1), 015004.  https://doi.org/10.1088/1361-6420/aa9830.CrossRefGoogle Scholar
  8. Dai, W., Fowler, P., & Schuster, G. T. (2012). Multi-source least-squares reverse time migration. Geophysical Prospecting,60(4), 681–695.  https://doi.org/10.1111/j.1365-2478.2012.01092.x.CrossRefGoogle Scholar
  9. Esser, E., Guasch, L., Herrmann, F., & Warner, M. (2016). Constrained waveform inversion for automatic salt flooding. The Leading Edge,35(3), 235–239.  https://doi.org/10.1190/tle35030235.1.CrossRefGoogle Scholar
  10. Esser, E., Guasch, L., van Leeuwen, T., Aravkin, A., & Herrmann, F. (2018). Total variation regularization strategies in full-waveform inversion. SIAM Journal on Imaging Sciences,11(1), 376–406.  https://doi.org/10.1137/17m111328x.CrossRefGoogle Scholar
  11. Fang, X. Z., Niu, F. L., & Wu, D. (2018). Least-squares reverse-time migration enhanced with the inverse scattering imaging condition. Chinese Journal of Geophysics,61(9), 3770–3782.  https://doi.org/10.6038/cjg2018l0721. (in Chinese).CrossRefGoogle Scholar
  12. Fehmers, G., & Höcker, C. (2003). Fast structural interpretation with structure–oriented filtering. Geophysics,68(4), 1286–1293.  https://doi.org/10.1190/1.1598121.CrossRefGoogle Scholar
  13. Fomel, S. (2007). Shaping regularization in geophysical-estimation problems. Geophysics,72(2), R29–R36.  https://doi.org/10.1190/1.2433716.CrossRefGoogle Scholar
  14. Gao, K., Lin, Y, Huang, L., Queen, J., Moore, J., & Majer, E (2015). Anisotropic elastic waveform inversion with modified total-variation regularization. SEG technical program expanded abstracts, pp. 5158–5163.Google Scholar
  15. Gomes, A., & Chazalnoel, N. (2017). Extending the reach of full-waveform inversion with reflection data: Potential and challenges. SEG technical program expanded abstracts, pp. 1454-1459.Google Scholar
  16. Gomes, A., & Yang, Z. (2018). Improving reflection FWI reflectivity using LSRTM in the curvelet domain. SEG technical program expanded abstracts, pp. 1248–1252.Google Scholar
  17. Hale, D. (2009). Structure-oriented smoothing and semblance. CWP report 635.Google Scholar
  18. Irabor, K., & Warner, M. (2016). Reflection FWI. SEG technical program expanded abstracts, pp. 1136-1140.Google Scholar
  19. Jannane, M., Beydoun, W., Crase, E., Cao, D., Koren, Z., Landa, E., et al. (1989). Wavelengths of earth structures that can be resolved from seismic reflection data. Geophysics,54(7), 906–910.  https://doi.org/10.1190/1.1442719.CrossRefGoogle Scholar
  20. Kalita, M., Kazei, V., Choi, Y., & Alkhalifah, T. (2018). Regularized full-waveform inversion for salt bodies. SEG technical program expanded abstracts, pp. 1043–1047.  https://doi.org/10.1190/segam2018-2995963.1.
  21. Kazei, V., Tessmer, E., & Alkhalifah, T. (2016). Scattering angle-based filtering via extension in velocity. SEG technical program expanded abstracts, pp. 1157–1162.  https://doi.org/10.1190/segam2016-13870908.1.
  22. Lee, D., & Pyun, S. (2018). Adaptive preconditioning of full-waveform inversion based on structure-oriented smoothing filter. SEG technical program expanded abstracts, pp. 1048–1052.  https://doi.org/10.1190/segam2018-2996620.1.
  23. Lewis, W., Amazonas, D., Vigh, D., & Coates, R. (2014). Geologically constrained full-waveform inversion using an anisotropic diffusion based regularization scheme: Application to a 3D offshore Brazil dataset. SEG technical program expanded abstracts, pp. 1083–1088.  https://doi.org/10.1190/segam2014-1174.1.
  24. Li, D., & Harris, J. M. (2018). Full waveform inversion with nonlocal similarity and model-derivative domain adaptive sparsity-promoting regularization. Geophysical Journal International,215(3), 1841–1864.  https://doi.org/10.1093/gji/ggy380.CrossRefGoogle Scholar
  25. Li, J., Innanen, K. A., & Wang, B. (2018). A new second order absorbing boundary layer formulation for anisotropic-elastic wavefield simulation. Pure and Applied Geophysics..  https://doi.org/10.1007/s00024-018-2046-z.CrossRefGoogle Scholar
  26. Lian, S., Yuan, S., Wang, G., Liu, T., Liu, Y., & Wang, S. (2018). Enhancing low-wavenumber components of full-waveform inversion using an improved wavefield decomposition method in the time-space domain. Journal of Applied Geophysics,157, 10–22.  https://doi.org/10.1016/j.jappgeo.2018.06.013.CrossRefGoogle Scholar
  27. Liang, Z., Wu, G., & Zhang, X. (2018). Time domain full waveform inversion with low frequency wavefield decompression. Journal of Geophysics and Engineering,15(6), 2330–2338.  https://doi.org/10.1088/1742-2140/aac62f.CrossRefGoogle Scholar
  28. Luo, J., Wu, R.-S., & Gao, F. (2018). Time-domain full waveform inversion using instantaneous phase information with damping. Journal of Geophysics and Engineering,15(3), 1032–1041.  https://doi.org/10.1088/1742-2140/aaa984.CrossRefGoogle Scholar
  29. Mora, P. (1989). Inversion = migration + tomography. Geophysics,54(12), 1575–1586.  https://doi.org/10.1190/1.1442625.CrossRefGoogle Scholar
  30. Pratt, R. (1999). Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics,64(3), 888–901.  https://doi.org/10.1190/1.1444597.CrossRefGoogle Scholar
  31. Qiu, L., Chemingui, N., Zou, Z., & Valenciano, A. (2016). Full-waveform inversion with steerable variation regularization. SEG technical program expanded abstracts, pp. 1174–1178.  https://doi.org/10.1190/segam2016-13872436.1.
  32. Qu, S., Verschuur, D. J., & Chen, Y. (2017). Full waveform inversion using an automatic directional total variation constraint. In 79th EAGE conference, pp. 1–4.  https://doi.org/10.3997/2214-4609.201701340.
  33. Ramos-Martinez, J., Crawley, S., Zou, K., Valenciano, A., Qiu, L., Chemingui, N., & Long, A. (2016). A robust gradient for long wavelength FWI updates. ASEG technical program expanded abstracts, pp. 547–551.Google Scholar
  34. Rocha, D., Sava, P., & Guitton, A. (2018). 3D acoustic least-squares reverse time migration using the energy norm. Geophysics,83(3), S261–S270.  https://doi.org/10.1190/geo2017-0466.1.CrossRefGoogle Scholar
  35. Tang, Y., Lee, S, Baumstein, A, & Hinkley, D. (2013). Tomographically enhanced full wavefield inversion. SEG technical program expanded abstracts, pp. 1037–1041.  https://doi.org/10.1190/segam2013-1145.1.
  36. Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics,49(8), 1259–1266.  https://doi.org/10.1190/1.1441754.CrossRefGoogle Scholar
  37. Tikhonov, A. N., & Arsenin, V. Y. (1977). Solution of Ill-posed problems. Hoboken: Wiley.Google Scholar
  38. Trinh, P., Brossier, R., Métivier, L., & Virieux, J. (2018). Data-oriented strategy and Vp/Vs model-constraint for simultaneous Vp and Vs reconstruction in 3D viscoelastic FWI: Application to the SEAM II Foothill dataset. SEG technical program expanded abstracts, pp. 1213–1217.  https://doi.org/10.1190/segam2018-2997555.1.
  39. Trinh, P. T., Brossier, R., Métivier, L., Virieux, J., & Wellington, P. (2017). Bessel smoothing filter for spectral-element mesh. Geophysical Journal International,209(3), 1489–1512.CrossRefGoogle Scholar
  40. Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics,74(6), WCC1–WCC26.  https://doi.org/10.1190/1.3238367.CrossRefGoogle Scholar
  41. Wang, Y. H. (2016). Seismic inversion: Theory and applications. Oxford: Wiley.CrossRefGoogle Scholar
  42. Wang, F., Chauris, H., Donno, D., & Calandra, H (2013). Taking advantage of wave field decomposition in full waveform inversion. In 75th EAGE conference, p. Tu0708.  https://doi.org/10.3997/2214-4609.20130415.
  43. Wang, P., Zhang, Z., Wei, Z, & Huang, R. (2018). A demigration-based reflection full-waveform inversion workflow. SEG technical program expanded abstracts, pp. 1138–1142.  https://doi.org/10.1190/segam2018-2997404.1.
  44. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., et al. (2013). Anisotropic 3D full-waveform inversion. Geophysics,78(2), R59–R80.  https://doi.org/10.1190/geo2012-0338.1.CrossRefGoogle Scholar
  45. Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: Teubner Verlag.Google Scholar
  46. Weickert, J., Ter Haar Romeny, B., & Viergever, M. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing,7(3), 398–410.CrossRefGoogle Scholar
  47. Wu, Z., & Alkhalifah, T. (2015). Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion. Geophysics,80(6), R317–R329.  https://doi.org/10.1190/geo2014-0365.1.CrossRefGoogle Scholar
  48. Wu, Z., & Alkhalifah, T. (2016). The optimized gradient method for full waveform inversion and its spectral implementation. Geophysical Journal International,205(3), 1823–1831.  https://doi.org/10.1093/gji/ggw112.CrossRefGoogle Scholar
  49. Xu, S., Wang, D., Chen, F., Lambaré, G., & Zhang, Y. (2012). Inversion on reflected seismic wave. SEG technical program expanded abstracts, pp. 1–7.  https://doi.org/10.1190/segam2012-1473.1.
  50. Yang, J., Liu, Y., & Dong, L. (2016). Least-squares reverse time migration in the presence of density variations. Geophysics,81(6), S497–S509.  https://doi.org/10.1190/geo2016-0075.1.CrossRefGoogle Scholar
  51. Yang, K., & Zhang, J. (2018). Least-squares reverse time migration with an angle-dependent weighting factor. Geophysics,83(3), S299–S310.  https://doi.org/10.1190/geo2017-0207.1.CrossRefGoogle Scholar
  52. Yao, G., da Silva, V., Kazei, M., Wu, D., & Yang, C. (2019a). Extraction of the tomography mode with nonstationary smoothing for full-waveform inversion. Geophysics,84(4), R527–R537.  https://doi.org/10.1190/geo2018-0586.1.CrossRefGoogle Scholar
  53. Yao, G., da Silva, N. V., Warner, M., & Kalinicheva, T. (2018a). Separation of migration and tomography modes of full-waveform inversion in the plane wave domain. Journal of Geophysical Research: Solid Earth,123(2), 1486–1501.  https://doi.org/10.1002/2017JB015207.CrossRefGoogle Scholar
  54. Yao, G., da Silva, N., Warner, M., Wu, D., & Yang, C. (2019b). Tackling cycleskipping in full-waveform inversion with intermediate data. Geophysics,84(3), R411–R427.  https://doi.org/10.1190/geo2018-0096.1.CrossRefGoogle Scholar
  55. Yao, G., da Silva, N. V., & Wu, D. (2018b). Forward modelling formulas for least-squares reverse-time migration. Exploration Geophysics,49(4), 506–518.  https://doi.org/10.1071/EG16157.CrossRefGoogle Scholar
  56. Yao, G., da Silva, N., & Wu, D. (2018c). An effective absorbing layer for the boundary condition in acoustic seismic wave simulation. Journal of Geophysics and Engineering,15(2), 495–511.  https://doi.org/10.1088/1742-2140/aaa4da.CrossRefGoogle Scholar
  57. Yao, G., & Jakubowicz, H. (2016). Least-squares reverse-time migration in a matrix-based formulation. Geophysical Prospecting,64(3), 611–621.  https://doi.org/10.1111/1365-2478.12305.CrossRefGoogle Scholar
  58. Yao, G., & Wu, D. (2017). Reflection full waveform inversion. Science China Earth Sciences,60(10), 1783–1794.  https://doi.org/10.1007/s11430-016-9091-9.CrossRefGoogle Scholar
  59. Yong, P., Liao, W., Huang, J., & Li, Z. (2018). Total variation regularization for seismic waveform inversion using an adaptive primal dual hybrid gradient method. Inverse Problems,34(4), 045006.  https://doi.org/10.1088/1361-6420/aaaf8e.CrossRefGoogle Scholar
  60. Zhang, Y., Duan, L., & Xie, Y. (2015). A stable and practical implementation of least-squares reverse time migration. Geophysics,80(1), V23–V31.  https://doi.org/10.1190/geo2013-0461.1.CrossRefGoogle Scholar
  61. Zhou, W., Brossier, R., Operto, S., & Virieux, J. (2015). Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation. Geophysical Journal International,202(3), 1535–1554.  https://doi.org/10.1093/gji/ggv228.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Unconventional Natural Gas Institute, State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing)BeijingChina
  2. 2.Department of Earth ScienceRice UniversityHoustonUSA
  3. 3.Department of Earth Science and EngineeringImperial College LondonLondonUK

Personalised recommendations