Pure and Applied Geophysics

, Volume 176, Issue 11, pp 5125–5140 | Cite as

Role of Natural and Anthropogenic Loadings on Indian Temperature Trends

  • Padmavathi B.
  • Rajesh RekapalliEmail author
  • R. K. Tiwari


We evaluate the impact of natural and anthropogenic loadings on Indian maximum (Tmax) and minimum (Tmin) temperature variabilities during 1901–2015 using multiple spectral and statistical analyses. We compare the significant eigenmodes of temperature with TSI, Ocean and Atmospheric Processes (OAP) such as ENSO, PDO, NAO, AMO and CO2 data to understand their influence on temperature. The present analysis is based on new eigen-weighted correlation coefficient (EWCC) and regression analysis to assess the sensitivity of temperature to TSI, OAP and CO2. The first eigenmodes (EM) of Tmax and Tmin representing the long-term trend correlate well with the first EM of TSI (EWCC: 0.90 and 0.78) and CO2 (EWCC: 0.95 and 0.72), respectively. The CO2 residing throughout the day and night in the atmosphere may produce a similar linearly increasing trend in Tmax and Tmin. However, the trend test revealed non-stationarity in the trends of Tmax and Tmin. In addition, the regression analysis revealed high sensitivity of the Tmax and Tmin trend to TSI compared with CO2. Our study suggests that there is an intermittent change in the running mean of TSI between 1901 and 2015 resulting in observed changes in Tmax. In addition, spectral analysis of the Tmax and Tmin records revealed statistical significant  periodicities of ~ 2–7 years and 11 ± 2 years in Tmax and ~ 2–7 years and 50 ± 4 years in Tmin, which may be associated with OAP and TSI, respectively. Based on the present analyses, we conclude that there are combined responses of (1) intrinsic variation in TSI and CO2, which may be interpreted as the major loading factors on the trend of Tmax and Tmin, respectively; (2) periodic variabilities in different frequency bands may be associated with both solar and ocean atmospheric processes depending upon time scales.


Indian maximum and minimum temperature CO2 TSI ENSO PDO NAO AMO 



The authors thank the Director, CSIR-NGRI, for his permission to publish this work (Ref. no. NGRI/Lib/2019/Pub-15). RKT is grateful to DAE for awarding RRF and RR is thankful to CSIR for funding the RA fellowship. The authors thank the IMD director for providing the Indian temperature raw data, Wolter and Timlin for providing ENSO Index, Coddington et al. for the TSI data, Mantua et al. PDO data, Jones et al. for the NAO data, Huang et al. for the AMO data and Etheridge et al. for the CO2 data in KNMI explorer.

Supplementary material

24_2019_2247_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1853 kb)


  1. Alexandrov, T. (2009). A method of trend extraction using singular spectrum analysis. REVSTAT–Statistical Journal, 7(1), 1–22.Google Scholar
  2. Appenzeller, C., Stocker, T. F., & Anklin, M. (1998). North Atlantic oscillation dynamics recorded in Greenland ice cores. Science,282(5388), 446–449.Google Scholar
  3. Ashok, K., Guan, Z., & Yamagata, T. (2001). Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophysical Research Letters,28(23), 4499–4502.Google Scholar
  4. Ball, W. T., Haigh, J. D., Rozanov, E. V., Kuchar, A., Sukhodolov, T., Tummon, F., et al. (2016). High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature Geoscience,9(3), 206.Google Scholar
  5. Barnett, T. P., Dümenil, L., Schlese, U., Roeckner, E., & Latif, M. (1989). The effect of Eurasian snow cover on regional and global climate variations. Journal of the Atmospheric Sciences,46(5), 661–686.Google Scholar
  6. Behera, S. K., & Yamagata, T. (2003). Influence of the Indian Ocean dipole on the Southern Oscillation. Journal of the Meteorological Society of Japan Series II,81(1), 169–177.Google Scholar
  7. Chowdary, J. S., John, N., & Gnanaseelan, C. (2014). Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean Sea surface temperature. International Journal of Climatology,34(2), 416–429.Google Scholar
  8. Chylek, P., Tans, P., Christy, J., & Dubey, M. K. (2018). The carbon cycle response to two El Nino types: An observational study. Environmental Research Letters,13(2), 024001.Google Scholar
  9. Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., & Lindholm, D. (2016). A solar irradiance climate data record. Bulletin of the American Meteorological Society,97(7), 1265–1282.Google Scholar
  10. Dong, L., & McPhaden, M. J. (2017). The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environmental Research Letters,12(3), 034011.Google Scholar
  11. Eddy, J. A. (1988). Variability of the present and ancient sun: a test of solar uniformitarianism. In: Secular solar and geomagnetic variations in the last 10,000 years (pp. 1–23). Dordrecht: Springer.Google Scholar
  12. Engels, S., & van Geel, B. (2012). The effects of changing solar activity on climate: Contributions from palaeoclimatological studies. Journal of Space Weather and Space Climate,2, A09.Google Scholar
  13. Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., & Morgan, V. I. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic Ice and firn. Journal of Geophysical Research: Atmospheres,101(D2), 4115–4128.Google Scholar
  14. Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., et al. (2016). Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science,351(6274), 696–699.Google Scholar
  15. Friis-Christensen, E., & Svensmark, H. (1997). What do we really know about the sun-climate connection? Advances in Space Research,20(4), 913–921.Google Scholar
  16. Golyandina, N., & Zhigljavsky, A. (2013). Singular spectrum analysis for time series. Springer.Google Scholar
  17. Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., & Daube, B. C. (2013). Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science, 341(6150), 1085–1089.Google Scholar
  18. Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., & Luterbacher, J. (2010). Solar influences on climate. Reviews of Geophysics. Scholar
  19. Haigh, J. D. (1996). The impact of solar variability on climate. Science,272(5264), 981–984.Google Scholar
  20. Haigh, J. D., Winning, A. R., Toumi, R., & Harder, J. W. (2010). An influence of solar spectral variations on radiative forcing of climate. Nature,467(7316), 696.Google Scholar
  21. Hao, Y., Chen, H., Wei, Y. M., & Li, Y. M. (2016). The influence of climate change on CO2 (carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel data. Journal of Cleaner Production,131, 667–677.Google Scholar
  22. Hassani, H., & Zhigljavsky, A. (2009). Singular spectrum analysis: Methodology and application to economics data. Journal of Systems Science and Complexity,22(3), 372–394.Google Scholar
  23. Hu, F. S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., et al. (2003). Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science,301(5641), 1890–1893.Google Scholar
  24. Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., et al. (2017). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate,30(20), 8179–8205.Google Scholar
  25. Ineson, S., Scaife, A. A., Knight, J. R., Manners, J. C., Dunstone, N. J., Gray, L. J., et al. (2011). Solar forcing of winter climate variability in the northern hemisphere. Nature Geoscience,4(11), 753.Google Scholar
  26. Jones, P. D., Jónsson, T., & Wheeler, D. (1997). Extension to the north atlantic oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of Climatology,17, 1433–1450.Google Scholar
  27. Kasatkina, E. A., Shumilov, O. I., & Krapiec, M. (2007). On periodicities in long term climatic variations near 68 N, 30 E. Advances in Geosciences, 13, 25–29.Google Scholar
  28. Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research: Atmospheres,107(D24), ACL-5.Google Scholar
  29. Kothawale, D. R., Munot, A. A., & Kumar, K. K. (2010). Surface air temperature variability over India during 1901–2007, and its association with ENSO. Climate Research,42(2), 89–104.Google Scholar
  30. Lean, J., & Rind, D. (1999). Evaluating sun–climate relationships since the Little Ice Age. Journal of Atmospheric and Solar-Terrestrial Physics,61(1–2), 25–36.Google Scholar
  31. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society,78(6), 1069–1080.Google Scholar
  32. Nevison, C. D., Baker, D. F., & Gurney, K. R. (2012). A methodology for estimating seasonal cycles of atmospheric CO2 resulting from terrestrial net ecosystem exchange (NEE) fluxes using the Transcom T3L2 pulse-response functions. Geoscientific Model Development Discussions,3, 2789–2809.Google Scholar
  33. Pachauri, R. K., Meyer, L., Plattner, G. K., & Stocker, T. (2014). IPCC, 2014: Climate change 2014: synthesis report. Geneva, Switzerland: IPCC.Google Scholar
  34. Pant, G. B., & Kumar, K. R. (1997). Climates of south Asia. WileyGoogle Scholar
  35. Proctor, C., Baker, A., & Barnes, W. (2002). A three-thousand-year record of North Atlantic climate. Climate Dynamics,19(5–6), 449–454.Google Scholar
  36. Rajesh, R., & Tiwari, R. K. (2018a). Search for trends and periodicities in inter-hemispheric sea surface temperature difference. Pure and Applied Geophysics,175(6), 2381–2394.Google Scholar
  37. Rajesh, R., & Tiwari, R.K. (2018b). Impact of solar cycles on groundwater recharge on decadal to centennial scale: A case study from Northwest China. Abstract volume, 55th Annual Convention of Indian Geophysical Union, Dec 2018, p14.Google Scholar
  38. Raspopov, O. M., Shumilov, O. I., Kasatkina, E. A., Turunen, E., & Lindholm, M. (2000). 35-year climatic bruckner cycle-solar control of climate variability? The Solar Cycle and Terrestrial Climate. Solar and space weather, 463, 517–520.Google Scholar
  39. Rekapalli, R., & Tiwari, R. K. (2015). A short note on the application of singular spectrum analysis for geophysical data processing. J. Ind. Geophys. Union,19(1), 77–85.Google Scholar
  40. Rekapalli, R., Tiwari, R. K., Dhanam, K., & Seshunarayana, T. (2014). Tx frequency filtering of high resolution seismic reflection data using singular spectral analysis. Journal of Applied Geophysics,105, 180–184.Google Scholar
  41. Rigozo, N. R., Nordemann, D. J. R., da Silva, H. E., de Souza Echer, M. P., & Echer, E. (2007). Solar and climate signal records in tree ring width from Chile (AD 1587–1994). Planetary and Space Science,55(1–2), 158–164.Google Scholar
  42. Scafetta, N. (2012). Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial Physics,80, 296–311.Google Scholar
  43. Serita, A., Hattori, K., Yoshino, C., Hayakawa, M., & Isezaki, N. (2005). Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. Natural Hazards and Earth System Science, 5(5), 685–689.Google Scholar
  44. Singh, Y. P., & Singh M. (2006) Does solar variability affect Indian (Tropical) weather and climate? An assessment. In Proceedings of the ILWS Workshop (vol. 1).Google Scholar
  45. Tiwari, R. K., & Rajesh, R. (2014). Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophysical Research Letters,41(9), 3103–3109.Google Scholar
  46. Tiwari, R. K., & Rajesh, R. (2019). Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data. Springer International Publishing, ISBN 978-3-030-19303-4,
  47. Tiwari, R. K., Rajesh, R., & Padmavathi, B. (2015). Evidence for nonlinear coupling of solar and ENSO signals in Indian temperatures during the past century. Pure and Applied Geophysics,172(2), 531–543.Google Scholar
  48. Tiwari, R. K., Rajesh, R., & Padmavathi, B. (2016). Evidence of higher-order solar periodicities in China temperature record. Pure and Applied Geophysics,173(7), 2511–2520.Google Scholar
  49. Tiwari, R. K., & Rao, K. N. N. (2004). Signature of ENSO signals in the coral growth rate record of Arabian Sea and Indian monsoons. Pure and Applied Geophysics,161(2), 413–427.Google Scholar
  50. Tsonis, A. A., Elsner, J. B., Hunt, A. G., & Jagger, T. H. (2005). Unfolding the relation between global temperature and ENSO. Geophysical Research Letters, 32(9), L09701.Google Scholar
  51. Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena,35(3), 395–424.Google Scholar
  52. White, W. B., & Liu, Z. (2008). Non‐linear alignment of El Nino to the 11‐yr solar cycle. Geophysical Research Letters, 35(19), L19607.Google Scholar
  53. Wolter, K., & Timlin, M. S. (1993). Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, 5257. Google Scholar
  54. Yousef, S. M. (2000). The solar Wolf-Gleissberg cycle and its influence on the Earth. In Proceedings of the International Conference on the Environmental Hazards Mitigation. Cairo: Cairo University.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSIR-NGRIHyderabadIndia
  2. 2.AcSIR, CSIR-NGRIHyderabadIndia

Personalised recommendations