Twenty-Five Years of Progress in the Science of “Geological” Tsunamis Following the 1992 Nicaragua and Flores Events

  • Emile A. OkalEmail author


We review a set of 47 tsunamis of geological origin (triggered by earthquakes, landslides or volcanoes) which have occurred over the past 25 years and provided significant new insight into theoretical, experimental, field, or societal aspects of tsunami science. Among the principal developments in our command of various aspects of tsunamis, we earmark the development of the W-phase inversion for the low-frequency moment tensor of the parent earthquake; the abandonment of the concept of a maximum earthquake magnitude for a given subduction zone, controlled by simple plate properties; the development and implementation of computer codes simulating the interaction of tsunamis with initially dry land at beaches, thus introducing a quantitative component to realistic tsunami warning procedures; and the recent in situ investigation of current velocities, in addition to the field of surface displacements, during the interaction of tsunamis with harbors. Continued research remains warranted, notably in the field of the real time identification of “tsunami earthquakes” whose tsunamis are larger than expected from their seismic magnitudes, especially conventional ones. The recent tragedy during the 2018 Krakatau flank collapse, along a scenario which had been quantitatively forecast, also emphasizes the need for a continued effort in the education of the populations at risk.


Tsunamis 1992 Nicaragua tsunami 1992 Flores tsunami 2004 Sumatra tsunami 2011 Tohoku tsunami 



I am grateful to my many colleagues and students over the years, who helped me discover challenges in so many theoretical, experimental or field aspects of tsunami science; they are too numerous to list, but they know who they are. I thank Editor A.B. Rabinovich for motivating me to write this review, and for pointing out the importance of a few events which I had originally left aside. I am very grateful to Paul Whitmore and Slava Gusiakov for constructive reviews. Figure 1 was drafted using the GMT software (Wessel and Smith 1991).


  1. Abe, K., Abe, K., Tsuji, Y., Imamura, F., Katao, H., Iio, Y., et al. (1993). Field survey of the Nicaragua earthquake and tsunami of September 2, 1992. Bulletin of the Earthquake Research Institute of Tokyo University, 68, 23–70.Google Scholar
  2. Altınok, Y., Tinti, S., Alpar, V., Yalçıner, A. C., Ersoy, Ş., Bortolucci, E., et al. (2001). The Tsunami of August 17, 1999 in İzmit Bay. Turkey, Natural Hazards, 24, 133–146.CrossRefGoogle Scholar
  3. Ambraseys, N. N. (1991). The Rukwa earthquake of 13 December 1910 in East Africa. Terra Nova, 3, 202–211.CrossRefGoogle Scholar
  4. Ammon, C. J. (2008). A great earthquake doublet and seismic stress transfer cycle in the central Kuril Islands. Nature, 451, 561–565.CrossRefGoogle Scholar
  5. Angenheister, G. (1920). Vier Erdbeben and Flutwellen im pazifischen Ozean, beobachtet am Samoa Observatorium, 1917–1919, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematische-physikalische Klasse, 201–204.Google Scholar
  6. Aránguiz, R., González, G., González, J., Catalán, P. A., Cienfuegos, R., Yagi, Y., et al. (2016). The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics, 173, 333–348.CrossRefGoogle Scholar
  7. Artru, J., Dučić, V., Kanamori, H., Lognonné, P., & Murakami, M. (2005). Ionospheric detection of gravity waves induced by tsunamis. Geophysical Journal International, 160, 840–848.CrossRefGoogle Scholar
  8. Barberopoulou, A., Borrero, J. C., Uslu, B., Legg, M. R., & Synolakis, C. E. (2011). A second generation of tsunami inundation maps for the State of California. Pure and Applied Geophysics, 168, 2133–2146.CrossRefGoogle Scholar
  9. Barrientos, S. E., Vigny, C., Ward, S. N., & Bataille, K. D. (2009). Earthquake-induced rockfall and tsunami in Southern Chile. Eos, Transactions of the American Geophysical Union, 90(53), NH43B–1315 [abstract].Google Scholar
  10. Bernard, E. N., & Milburn, H. B. (1985). Long-wave observations near the Galápagos Islands. Journal of Geophysical Research, 90, 3361–3366.CrossRefGoogle Scholar
  11. Boatwright, J., & Choy, G. L. (1986). Teleseismic estimates of the energy radiated by shallow earthquakes. Journal of Geophysical Research, 91, 2095–2112.CrossRefGoogle Scholar
  12. Borrero, J. C., Ortíz, M., Titov, V. V., & Synolakis, C. E. (1997). Field survey of Mexican tsunami produces new data, unusual photos, Eos. Transactions of the American Geophysical Union, 78, 85 and 87–88.CrossRefGoogle Scholar
  13. Borrero, J. C., Yalçıner, A. C., Kânoğlu, U., Titov, V. V., McCarthy, D., & Synolakis, C. E. (2003). Producing tsunami inundation maps in California. In A. C. Yalçıner, E. N. Pelinovsky, E. A. Okal, & C. E. Synolakis (Eds.), Submarine landslides and tsunamis (pp. 315–329). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. Borrero, J. C., Weiss, R., Okal, E. A., Hidayat, R., Suranto, A. D., & Titov, V. V. (2009). The tsunami of 12 September 2007, Bengkulu Province, Sumatra, Indonesia: Post-tsunami survey and numerical modeling. Geophysical Journal International, 178, 180–194.CrossRefGoogle Scholar
  15. Borrero, J. C., McAdoo, B. G., Jaffe, B., Dengler, L., Gelfenbaum, G., Higman, B., et al. (2011). Field survey of the March 28, 2005 Nias-Simeulue earthquake and tsunami. Pure and Applied Geophysics, 168, 1075–1088.CrossRefGoogle Scholar
  16. Borrero, J. C., Kalligeris, N., Lynett, P. J., Fritz, H. M., Newman, A. V., & Convers, J. A. (2014). Observations and modeling of the August 27, 2012 earthquake affecting El Salvador and Nicaragua. Pure and Applied Geophysics, 171, 3421–3435.CrossRefGoogle Scholar
  17. Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami run-up on a circular island. Pure and Applied Geophysics, 144, 569–594.CrossRefGoogle Scholar
  18. Brunt, K. M., Okal, E. A., & MacAyeal, D. R. (2011). Antarctic ice-shelf calving triggered by Honshu earthquake and tsunami, March 2011. Journal of Glaciology, 57, 785–788.CrossRefGoogle Scholar
  19. Caminade, J.-P., Charlie, D., Kânoğlu, U., Koshimura, S., Matsutomi, H., Moore, A., et al. (2000). Vanuatu earthquake and tsunami cause much damage, few casualties, Eos. Transactions of the American Geophysical Union, 81, 641 and 646–6470.CrossRefGoogle Scholar
  20. Catalán, P. A., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., et al. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters, 42, 2918–2925.CrossRefGoogle Scholar
  21. Chlieh, M., Perfettini, H., Tavera, H., Avouac, J.-P., Remy, D., Nocquet, J.-M., et al. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research, 116, B12405, 21 pp.CrossRefGoogle Scholar
  22. Choy, G. L., & Boatwright, J. (2007). The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute \(P\)-wave windows. Bulletin of the Seismological Society of America, 97, S18–S24.CrossRefGoogle Scholar
  23. Cruz, G., & Wyss, M. (1983). Large earthquakes, mean sea level, and tsunamis along the Pacific coast of Mexico and Central America. Bulletin of the Seismological Society of America, 73, 553–570.Google Scholar
  24. Dengler, L., Borrero, J., Gelfenbaum, G., Jaffe, B., Okal, E. A., Ortíz, M., et al. (2003). Tsunami. In A. Rodriguez-Marek & C. Edwards (Eds.), Southern Peru earthquake of 23 June 2001, reconnaissance report (Vol. 19, pp. 115–144). Oakland: Earthquake Spectra. Supp. A.Google Scholar
  25. Dengler, L., Uslu, B., Barberopoulou, A., Yim, S. C., & Kelly, A. (2009). The November 15, 2006 Kuril Islands-generated tsunami in Crescent City. California, Pure and Applied Geophysics, 166, 37–53.CrossRefGoogle Scholar
  26. Fine, I. V., Cherniawsky, J. Y., Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2015). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172, 699–718.CrossRefGoogle Scholar
  27. Fritz, H. M., & Kalligeris, N. (2008). Ancestral heritage saves tribes during 1 April 2007 Solomon Islands tsunami. Geophysical Research Letters, 35(1), L01607, 5 pp.CrossRefGoogle Scholar
  28. Fritz, H. M., Borrero, J. C., Synolakis, C. E., & Yoo, J. (2006). 2004 Indian Ocean tsunami flow velocity measurements from survivor videos. Geophysical Research Letters, 33(24), L24605, 5 pp.CrossRefGoogle Scholar
  29. Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbits, C., et al. (2007). Extreme run-up from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12), L12602.CrossRefGoogle Scholar
  30. Fritz, H. M., Kalligeris, N., Borrero, J. C., Broncano, P., & Ortega, E. (2008). The 15 August 2007 Peru tsunami run-up observations and modeling. Geophysical Research Letters, 35(10), L10604, 5 pp.CrossRefGoogle Scholar
  31. Fritz, H. M., Borrero, J. C., Synolakis, C. E., Okal, E. A., Weiss, R., Titov, V. V., et al. (2011a). Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth Science Reviews, 107, 66–75.CrossRefGoogle Scholar
  32. Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., et al. (2011b). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168, 1989–2010.CrossRefGoogle Scholar
  33. Fritz, H. M., Vilmond-Hillaire, J., Molière, E., Wei, Y., & Mohammed, F. (2012). Twin tsunamis triggered by the 12 January 2010 Haiti earthquake. Pure and Applied Geophysics, 170, 1463–1474.CrossRefGoogle Scholar
  34. Fritz, H. M., Papantoniou, A., Biuokoto, L., & Gilly, A. (2013). The Solomon Islands tsunami of 6 February 2013 field survey in the Santa Cruz Islands. Eos, Transactions of the American Geophysical Union, 96(53), NH41A-1696. [abstract].Google Scholar
  35. Fritz, H. M., Giachetti, T., Anderson, S. A., & Gauthier, D. (2018). Field survey of the 17 June 2017 landslide-generated tsunami in Karrat Fjord, Greenland. Geophysical Research Abstracts, 20, EGU-2018-18345 [abstract].Google Scholar
  36. Giachetti, T., Paris, R., Kelfoun, K., & Ontowirjo, B. (2012). Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. Geological Society of London, Special Publications, 361, 79–90.CrossRefGoogle Scholar
  37. Gica, E., Spillane, M., Titov, V. V., Chamberlin, C., & Newman, J. C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. OAR PMEL, 139, 89. pp.Google Scholar
  38. Godin, O. A., Irisov, V. G., Leben, R. R., Hamlington, B. D., & Wick, G. A. (2009). Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami. Natural Hazards Earth Science Systems, 9, 1135–1147.CrossRefGoogle Scholar
  39. González, F. I., Mader, C. L., Eble, M. C., & Bernard, E. N. (1991). The 1987–88 Alaskan Bight tsunamis: Deep ocean data and model comparisons. Natural Hazards, 4, 119–139.CrossRefGoogle Scholar
  40. Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog schemes. IOC Manuals and Guides, 35, 126. pp., UNESCO, Paris.Google Scholar
  41. Green, G. (1838). On the motion of waves in a variable canal of small depth and width. Transactions of the Cambridge Philosophical Society, 6, 457–462.Google Scholar
  42. Guilbert, J., Vergoz, J., Schisselé, E., Roueff, A., & Cansi, Y. (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the \(M_w=9.0\) Sumatra earthquake. Geophysical Research Letters, 32(15), L15310, 5 pp.CrossRefGoogle Scholar
  43. Gusiakov, V. K., Dunbar, P., & Arcos, N. (2019). Twenty-five years (1992–2016) of global tsunamis: Statistical and analytical overview. Pure and Applied Geophysics. Scholar
  44. Hammack, J. L. (1973). A note on tsunamis: Their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60, 769–799.CrossRefGoogle Scholar
  45. Hanson, J. A., & Bowman, J. R. (2005). Dispersive and reflected tsunami signals from the 2004 Indian Ocean tsunami observed on hydrophone and seismic stations. Geophysical Research Letters, 32(17), L17606. 5 pp.CrossRefGoogle Scholar
  46. Harig, S., Androsov, A., & Rakowsky, N. (2019). Simulating landslide generated tsunamis in Palu Bay, Sulawesi, Indonesia. Geophysical Research Abstracts, 21, EGU2019–7094 [abstract].Google Scholar
  47. Hayes, G. P., Rivera, L., & Kanamori, H. (2009). Source inversion of the \(W\) phase: Real-time implementation and extension to low magnitudes. Seismological Research Letters, 80, 817–822.CrossRefGoogle Scholar
  48. Hayes, G., Herman, M. W., Barnhart, W. D., Furlong, K. P., Riquelme, S., Benz, H. M., et al. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512, 295–298.CrossRefGoogle Scholar
  49. Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 \(M_w = 7.7\) Pakistan inland earthquake. Geophysical Journal International, 199, 752–766.CrossRefGoogle Scholar
  50. Heidarzadeh, M., & Satake, K. (2017). Possible dual earthquake-landslide source of the 13 November 2016 Kaikoura, New Zealand tsunami. Pure and Applied Geophysics, 174, 3737–3749.CrossRefGoogle Scholar
  51. Heidarzadeh, M., Murotani, S., Satake, K., Takagawa, T., & Saito, T. (2017). Fault size and depth extent of the Ecuador earthquake (\(M_w =7.8\)) of 16 April 2016 from teleseismic and tsunami data. Geophysical Research Letters, 44, 2211–2219.CrossRefGoogle Scholar
  52. Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2019). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176, 25–43.CrossRefGoogle Scholar
  53. Heinrich, P., Schindelé, F., Guibourg, S., & Ihmlé, P. (1998). Modeling of the 1996 Peruvian tsunami. Geophysical Research Letters, 25, 2687–2690.CrossRefGoogle Scholar
  54. Heinrich, P., Mangeney, A., Guibourg, S., Roche, R., Boudon, G., & Cheminée, J.-L. (1998). Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 25, 3697–3700.CrossRefGoogle Scholar
  55. Higman, H., Shugar, D. H., Stark, C. P., Ekström, G., Koppes, M. N., Lynett, P., et al. (2018). The 2015 landslide and tsunami in Taan Fiord, Alaska. Science Reports, 8(1), 12993, 12 pp.CrossRefGoogle Scholar
  56. Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., et al. (2012). The 2010 \(M_w =7.8\) Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research, Solid Earth, 117(6), B06402, 21 pp.Google Scholar
  57. Hutt, C. R., Bolton, H. F., & Holcomb, L. G. (2002). U.S. contribution to digital global seismograph network. In W. H. K. Lee, H. Kanamori, P. Jennings, & C. Kisslinger (Eds.), International Handbook of Earthquake and Engineering Seismology (pp. 319–332). New York: Academic Press.CrossRefGoogle Scholar
  58. Ihmlé, P., Gomez, J.-M., Heinrich, P., & Guibourg, S. (1998). The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophysical Research Letters, 25, 2691–2694.CrossRefGoogle Scholar
  59. Imamura, F., Shuto, N., Ide, S., Yoshida, Y., & Abe, K. (1993). Estimate of the tsunami source of the 1992 Nicaraguan earthquake from tsunami data. Geophysical Research Letters, 20, 1515–1518.CrossRefGoogle Scholar
  60. Imamura, F., Gica, E., Takahashi, T., & Shuto, N. (1995). Numerical simulations of the 1992 Flores tsunami: Interpretation of tsunami phenomena in Northeastern Flores and damage at Babi Island. Pure and Applied Geophysics, 144, 555–568.CrossRefGoogle Scholar
  61. Imamura, F., Synolakis, C. E., Gica, E., Titov, V. V., Listanco, E., & Lee, H. J. (1995). Field survey of the 1994 Mindoro Island, Philippines tsunami. Pure and Applied Geophysics, 144, 875–890.CrossRefGoogle Scholar
  62. Imamura, F., Subandono, D., Watson, G., Moore, A., Takahashi, T., Matsutomi, H., et al. (1997). Irian Jaya earthquake and tsunami cause serious damage. Eos, Transactions of the American Geophysical Union, 78, 197 and 201.CrossRefGoogle Scholar
  63. Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake, imaged by the Hi-Net array. Nature, 435, 933–936.CrossRefGoogle Scholar
  64. Kalligeris, N., Skanavis, V., Tavakkol, S., Ayça, A., El Safty, H., Lynett, P. J., et al. (2016). Lagrangian flow measurements and observations of the 2015 Chilean tsunami in Ventura, CA. Geophysical Research Letters, 43, 5217–5224.CrossRefGoogle Scholar
  65. Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6, 346–359.CrossRefGoogle Scholar
  66. Kanamori, H. (1993). \(W\) phase. Geophysical Research Letters, 20, 1691–1694.CrossRefGoogle Scholar
  67. Kanamori, H., & Cipar, J. J. (1974). Focal process of the great Chilean earthquake, May 22, 1960. Physics of the Earth and Planetary Interiors, 9, 128–136.CrossRefGoogle Scholar
  68. Kanamori, H., & Rivera, L. (2008). Source inversion of \(W\) phase: Speeding up tsunami warning. Geophysical Journal International, 175, 222–238.CrossRefGoogle Scholar
  69. Kanamori, H., Rivera, L., & Lamotte, S. (2019). Evidence for a large strike-slip component during the 1960 Chilean earthquake. Geophysical Journal International, 218, 1–32.CrossRefGoogle Scholar
  70. Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., de Lange, W. P., et al. (1999). Tsunami in Papua New Guinea was as intense as first thought. Eos, Transactions of the American Geophysical Union, 80, 101–105.CrossRefGoogle Scholar
  71. Kerr, R. (2005). Model shows islands muted tsunami. Science, 308, 341.CrossRefGoogle Scholar
  72. Kulikov, E. A., Rabinovich, A. B., Thomson, R. E., & Bornhold, B. D. (1996). The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 101, 6609–6615.CrossRefGoogle Scholar
  73. La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G. B., & Del Pezzo, E. (2004). Seismic signals associated with landslides and with a tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94, 1850–1867.CrossRefGoogle Scholar
  74. Lay, T., Kanamori, H., Ammon, C. J., Hutko, A. R., Furlong, K., & Rivera, L. (2009). The 2006–2007 Kuril Islands great earthquake sequence. Journal of Geophysical Research, Solid Earth, 114(B11), B11308, 31 pp.Google Scholar
  75. Lay, T., Ammon, C. J., Kanamori, H., Rivera, L., Koper, K. D., & Hutko, A. R. (2010). The 2009 Samoa–Tonga great earthquake triggered doublet. Nature, 466, 964–968.CrossRefGoogle Scholar
  76. Lay, T., Ammon, C. J., Kanamori, H., Xue, L., & Kim, M. J. (2011). Possible large near-trench slip during the 2011 \(M_w =9.0\) off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63, 687–692.CrossRefGoogle Scholar
  77. Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheug, K. F., Kwong, K., et al. (2013). The October 28, 2012 \(M_w =7.8\) Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Science Letters, 375, 57–70.CrossRefGoogle Scholar
  78. Lay, T., Ye, L., Bai, Y., Cheung, K. F., & Kanamori, H. (2018). The 2018 \(M_w =7.9\) Gulf of Alaska earthquake: Multiple fault rupture in the Pacific plate. Geophysical Research Letters, 45, 9542–9551.CrossRefGoogle Scholar
  79. Legrand, D., Barrientos, S. E., Bataille, K., Cembrano, J., & Pavez, A. (2011). The fluid-driven tectonic swarm of Aysén Fjord, Chile (2007) associated with two earthquakes (\(M_w = 6.1\) and \(M_w =6.2\)) within the Liquiñe-Ofqui Fault Zone. Continental Shelf Research, 31, 154–161.CrossRefGoogle Scholar
  80. Leonard, L. J., & Bednarski, J. M. (2014). Field survey following the 28 October 2012 Haida Gwaii tsunami. Pure and Applied Geophysics, 171, 3467–3482.CrossRefGoogle Scholar
  81. Li, X., Shao, G., & Ji, C. (2009). Rupture process of the 2009 \(M_w =8.1\) Samoa earthquake constrained by joint inverting teleseismic body, surface waves and local strong motion. Eos, Transactions of the American Geophysical Union, 91(53), U21D-03 [abstract].Google Scholar
  82. Liu, J. Y., Tsai, Y. B., Chen, S. W., Lee, C. P., Chen, Y. C., Yen, H. Y., et al. (2006). Giant ionospheric disturbances excited by the \(M =9.3\) Sumatra earthquake of 26 December 2004. Geophysical Research Letters, 33, L02103, 4 pp.Google Scholar
  83. Liu, P. L.-F., Cho, Y.-S., Yoon, S. B., & Seo, S. N. (1994). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In M. I. El-Sabh (Ed.), Recent Developments in Tsunami Research (pp. 99–115). Dordrecht: Kluwer.Google Scholar
  84. Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Synolakis, C. E., & Kânoğlu, U. (1995). Run-up of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.CrossRefGoogle Scholar
  85. Lobkovsky, L. I., Rabinovich, A. B., Kulikov, E. A., Ivashchenko, A. I., Fine, I. V., Thomson, R. E., et al. (2009). The Kuril earthquakes and tsunamis of November 15, 2006 and January 13, 2007: Observations, analysis and numerical modeling. Oceanology, 49, 166–181.CrossRefGoogle Scholar
  86. Lockwood, O. G., & Kanamori, H. (2006). Wavelet analysis of the seismograms of the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning. Geochemistry, Geophysics and Geosystems, 7(9), GC001272, 10 pp.CrossRefGoogle Scholar
  87. MacInnes, B. T. (2010). Bridging seismology and geomorphology: Investigations of the 2006 and 2007 Kuril Islands tsunamis, Ph.D. Dissertation, 188 pp., University of Washington, Seattle.Google Scholar
  88. MacInnes, B. T., Pinegina, T. K., Bourgeois, J., Razhigaeva, N. G., & Kaistrenko, V. M. (2009). Field survey and geological effects of the 15 November 2006 Kuril tsunami in the Middle Kuril Islands. Pure and Applied Geophysics, 166, 9–36.CrossRefGoogle Scholar
  89. Manoj, C., Maus, S., & Chulliat, A. (2011). Observation of magnetic fields generated by tsunamis. Eos, Transactions of the American Geophysical Union, 92, 13–14.CrossRefGoogle Scholar
  90. Marris, E. (2005). Inadequate warning system left Asia at the mercy of tsunami. Nature, 433, 3–5.CrossRefGoogle Scholar
  91. Martin, S. S., Li, L., Okal, E. A., Morin, J., Tetteroo, A., Switzer, A., et al. (2019). Reassessment of the 1907 Sumatra “tsunami earthquake” based on macroseismic, seismological, and tsunami observations, and modeling. Pure and Applied Geophysics. Scholar
  92. Matsutomi, H., & Iizuka, H. (1998). Tsunami current velocity on land and its simple estimation method. Proceedings of Coastal Engineering, Japan Society of Coastal Engineers, 45, 361–365. [in Japanese].Google Scholar
  93. Matsutomi, H., Shuto, N., Imamura, F., & Takahashi, T. (2001). Field survey of the 1996 Irian Jaya earthquake tsunami in Biak Island. Natural Hazards, 24, 199–212.CrossRefGoogle Scholar
  94. McAdoo, B. G., Dengler, L., Prasetya, G., & Titov, V. V. (2006). Smong: How an oral history saved thousands on Indonesia’s Simeulue Island during the December 2004 and March 2005 tsunamis. Earthquake Spectra, 22, S661–S669.CrossRefGoogle Scholar
  95. McCaffrey, R. (2007). The next great earthquake. Science, 315, 1675–1676.CrossRefGoogle Scholar
  96. McCloskey, J., Nalbant, S. S., & Steacy, S. (2005). Earthquake risk from co-seismic stress. Nature, 434, 291.CrossRefGoogle Scholar
  97. McNamara, D. E., Ringler, A. T., Hutt, C. R., & Gee, L. S. (2011). Seismically observed seiching in the Panama Canal. Journal of Geophysical Research, 116(B4), B04312, 12 pp.CrossRefGoogle Scholar
  98. Meining, C., Stalin, S. E., Nakamura, A. I., González, F. I., & Milburn, H. B. (2005). Technology developments in real-time tsunami measuring, monitoring and forecasting. Proceedings of OCEANS 2005, MTS/IEEE, 93, 1673–1679.Google Scholar
  99. Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: Giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50, 253–266.Google Scholar
  100. Nalbant, S., Steacy, S., Sieh, K., Natawidjaja, D., & McCloskey, J. (2005). Updated earthquake hazard in Sumatra. Nature, 435, 756–757.CrossRefGoogle Scholar
  101. Nettles, M., Ekström, G., Dziewoński, A. M., & Maternovskaya, N. (2005). Source characteristics of the great Sumatra earthquake and its aftershocks. Eos, Transactions of the American Geophysical Union, 86(18), U43A−01 [abstract].Google Scholar
  102. Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The \( E/ M_0 \) discriminant for tsunami earthquakes. Journal of Geophysical Research, 103, 26885–26898.CrossRefGoogle Scholar
  103. Newman, A. V., Feng, L., Fritz, H. M., Lifton, Z. M., Kalligeris, N., & Wei, Y. (2011). The energetic 2010 \(M_w =7.1\) Solomon Islands tsunami earthquake. Geophysical Journal International, 186, 775–781.CrossRefGoogle Scholar
  104. Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5), L05302, 10 pp.CrossRefGoogle Scholar
  105. Ni, S., Kanamori, H., & Helmberger, D. V. (2005). Energy radiation from the Sumatra earthquake. Nature, 434, 582.CrossRefGoogle Scholar
  106. Nöggerath, J., Geller, R. J., & Gusiakov, V. K. (2011). Fukushima: The myth of safety, reality of geoscience. Bulletin of Atomic Scientists, 67(6), 36–37.Google Scholar
  107. Occhipinti, G., Lognonné, P., Kherani, A. A., & Hébert, H. (2006). Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophysical Research Letters, 33, L20104.CrossRefGoogle Scholar
  108. Okal, E. A. (1993). \( WM_m \): An extension of the concept of mantle magnitude to the \(W\) phase, with application to real-time assessment of the ultra-long component of the seismic source. Eos, Transactions of the American Geophysical Union, 74(33), 344 [abstract].Google Scholar
  109. Okal, E. A. (2003). \(T\) waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing the tsunamigenic slump. Pure and Applied Geophysics, 160, 1843–1863.CrossRefGoogle Scholar
  110. Okal, E. A. (2007). Seismic records of the 2004 Sumatra and other tsunamis: A quantitative study. Pure and Applied Geophysics, 164, 325–353.CrossRefGoogle Scholar
  111. Okal, E. A. (2013). From 3-Hz \(P\) waves to \({}_{0}S_2\): No evidence of a slow component to the source of the 2011 Tohoku earthquake. Pure and Applied Geophysics, 170, 963–973.CrossRefGoogle Scholar
  112. Okal, E. A. (2017). The excitation of tsunamis by deep earthquakes. Geophysical Journal International, 209, 234–249.Google Scholar
  113. Okal, E. A., & Borrero, J. C. (2011). The “tsunami earthquake” of 22 June 1932 in Manzanillo, Mexico: Seismological study and tsunami simulations. Geophysical Journal International, 187, 1443–1459.CrossRefGoogle Scholar
  114. Okal, E. A., & MacAyeal, D. R. (2006). Seismic recording on drifting icebergs: Catching seismic waves, tsunamis and storms from Sumatra and elsewhere. Seismological Research Letters, 77, 659–671.CrossRefGoogle Scholar
  115. Okal, E. A., & Newman, A. V. (2001). Tsunami earthquakes: The quest for a regional signal. Physics of the Earth and Planetary Interiors, 124, 45–70.CrossRefGoogle Scholar
  116. Okal, E. A., & Saloor, N. (2017). Historical tsunami earthquakes in the Southwest Pacific: An extension to \(\Delta > 80^{\circ }\) of the Energy-to-Moment parameter \(\Theta \). Geophysical Journal International, 210, 852–873.CrossRefGoogle Scholar
  117. Okal, E. A., Piatanesi, A., & Heinrich, P. (1999). Tsunami detection by satellite altimetry. Journal of Geophysical Research, 104, 599–615.CrossRefGoogle Scholar
  118. Okal, E. A., Fryer, G. J., Borrero, J. C., & Ruscher, C. (2002). The landslide and local tsunami of 13 September 1999 on Fatu-Hiva (Marquesas Islands; French Polynesia). Bulletin de la Société Géologique de France, 173, 359–367.CrossRefGoogle Scholar
  119. Okal, E. A., Dengler, L., Araya, S., Borrero, J. C., Gomer, B., Koshimura, S., et al. (2002). A field survey of the Camaná, Peru tsunami of June 23, 2001. Seismological Research Letters, 73, 904–917.Google Scholar
  120. Okal, E. A., Fritz, H. M., Raveloson, R., Joelson, G., Pančošková, P., & Rambolamanana, G. (2006a). Madagascar field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S263–S283.CrossRefGoogle Scholar
  121. Okal, E. A., Sladen, A., & Okal, E. A.-S. (2006b). Rodrigues, Mauritius and Réunion Islands field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S241–S261.CrossRefGoogle Scholar
  122. Okal, E. A., Fritz, H. M., Raad, P. E., Synolakis, C. E., Al-Shijbi, Y., & Al-Saifi, M. (2006c). Oman field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S203–S218.CrossRefGoogle Scholar
  123. Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006d). Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bulletin of the Seismological Society of America, 96, 1634–1648.CrossRefGoogle Scholar
  124. Okal, E. A., Talandier, J., & Reymond, D. (2007). Quantification of hydrophone records of the 2004 Sumatra tsunami. Pure and Applied Geophysics, 164, 309–323.CrossRefGoogle Scholar
  125. Okal, E. A., Fritz, F. M., & Sladen, A. (2009). 2004 Sumatra tsunami surveys in the Comoro Islands and Tanzania, and regional tsunami hazard from future Sumatra events. South African Journal of Geology, 112, 343–358.CrossRefGoogle Scholar
  126. Okal, E. A., Fritz, H. M., Synolakis, C. E., Borrero, J. C., Weiss, R., Lynett, P. J., et al. (2010). Field survey of the Samoa tsunami of 29 September 2009. Seismological Research Letters, 81, 577–591.CrossRefGoogle Scholar
  127. Okal, E. A., Kirby, S. H., & Kalligeris, N. (2016). The Showa Sanriku earthquake of 1933 March 2: A global seismological reassessment. Geophysical Journal International, 206, 1492–1514.CrossRefGoogle Scholar
  128. Okal, E. A., Hyvernaud, O., Paris, A., Hébert, H., & Heinrich, P. (2019). Ancillary records of the Krakatau eruption and tsunami of 22 December 2018. Geophysical Research Abstracts, 21, EGU2019–11563 [abstract].Google Scholar
  129. Paris, A., Okal, E. A., Guérin, C., Heinrich, P., Schindelé, F., & Hébert, H. (2019). Numerical modeling of the June 17, 2017 landslide and tsunami events in Karrat Fjord, West Greenland. Pure and Applied Geophysics. Scholar
  130. Pelinovsky, E., Zahibo, N., Dunkley, P., Edmonds, M., Herd, R., Talipova, T., et al. (2004). Tsunami generated by the volcano eruption on July 12–13, 2003 at Montserrat, Lesser Antilles. Science of Tsunami Hazards, 22, 44–57.Google Scholar
  131. Pelletier, B., Régnier, M., Calmant, S., Pillet, R., Cabioch, G., Lagabrielle, Y., et al. (2000). Le séisme d’Ambryn-Pentecôte du 26 novembre 1999 (\(M_w = 7,5\)): données préliminaires sur la séismicité, le tsunami et les déplacements associés. Comptes-Rendus de l’Académie des Sciences (Paris), Série 2, 331, 21–28.Google Scholar
  132. Peltier, W. R., & Hines, C. O. (1976). On the possible detection of tsunamis by a monitoring of the ionosphere. Journal of Geophysical Research, 81, 1995–2000.CrossRefGoogle Scholar
  133. Plafker, G. L. (1997). Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on Eastern Flores I., Indonesia. Geological Society of America, Abstracts with Program, 29(5), 57 [abstract].Google Scholar
  134. Pollitz, F., Banerjee, P., Bürgmann, R., Hashimoto, M., & Choosakul, N. (2006). Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes. Geophysical Research Letters, 33(6), L06309, 4 pp.CrossRefGoogle Scholar
  135. Power, W., Clark, K., King, D. N., Borrero, J., Howarth, J., Lane, E. M., et al. (2017). Tsunami runup and tide-gauge observations from the 14 November 2016 \(M=7.8\) Kaikōura earthquake, New Zealand. Pure and Applied Geophysics, 174, 2457–2473.CrossRefGoogle Scholar
  136. Prasetya, G., Husrin, S., Kongko, W., Istyanto, D., Hidayat, R., Asvaliantina, V., et al. (2019). The 22nd December 2018 Anak Krakatau Tsunami in Sunda Straits, Indonesia. Geophysical Research Abstracts, 21, EGU2019–12276 [abstract].Google Scholar
  137. Press, F., & Harkrider, D. G. (1966). Air-Sea waves from the explosion of Krakatoa. Science, 154, 1325–1327.CrossRefGoogle Scholar
  138. Rabinovich, A. B. (2019). Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event. Pure and Applied Geophysics, submitted.Google Scholar
  139. Rabinovich, A. B., & Thomson, R. E. (2007). The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the world ocean, Part I. Indian Ocean and South Africa. Pure and Applied Geophysics, 164, 261–308.CrossRefGoogle Scholar
  140. Rabinovich, A. B., Lobkovsky, L. I., Fine, I. V., Thomson, R. E., Ivelskaya, T. N., & Kulikov, E. A. (2008). Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007. Advances in Geosciences, 14, 105–116.CrossRefGoogle Scholar
  141. Ruff, L. J. (1989). Do trench sediments affect great earthquake occurrence in subduction zones? Pure and Applied Geophysics, 129, 263–282.CrossRefGoogle Scholar
  142. Ruff, L. J., & Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, 23, 240–252.CrossRefGoogle Scholar
  143. Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379, 246–249.CrossRefGoogle Scholar
  144. Shuto, N., & Matsutomi, H. (1995). Field survey of the 1993 Hokkaido-Nansei-Oki earthquake tsunami. Pure and Applied Geophysics, 144, 406–449.CrossRefGoogle Scholar
  145. Smith, W. H. F., Scharroo, R., Titov, V. V., Arcas, D., & Arbic, B. K. (2005). Satellite altimeters measure tsunami. Oceanography, 18, 11–13.CrossRefGoogle Scholar
  146. Solov’ev, S. L., & Go, C. N. (1984). Catalogue of tsunamis on the Eastern shore of the Pacific Ocean. Canadian Translations. Fisheries and Aquatic Sciences, 5078, 293. pp.Google Scholar
  147. Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604.CrossRefGoogle Scholar
  148. Stein, S., & Okal, E. A. (2005). Size and speed of the Sumatra earthquake. Nature, 434, 581–582.CrossRefGoogle Scholar
  149. Stein, S., & Okal, E. A. (2007). Ultra-long period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bulletin of the Seismological Society of America, 97, S279–S295.CrossRefGoogle Scholar
  150. Sweet, S., & Silver, E. A. (2003). Tectonics and slumping in the source region of the 1998 Papua New Guinea tsunami from seismic reflection images. Pure and Applied Geophysics, 160, 1945–1968.CrossRefGoogle Scholar
  151. Synolakis, C. E., & Kânoğlu, U. (2015). The Fukushima accident was preventable. Philosophical Transactions of the Royal Society (London), 373A, 20140374. 23 pp.Google Scholar
  152. Synolakis, C. E., & Okal, E. A. (2005). 1992–2002: Perspective on a decade of post-tsunami surveys. Advances in Natural and Technological Hazards. In K. Satake (Ed.), Tsunamis: Case studies and recent developments (Vol. 23, pp. 1–30). Berlin: Springer.CrossRefGoogle Scholar
  153. Synolakis, C. E., Imamura, F., Tsuji, Y., Matsutomi, H., Tinti, S., Cook, B., et al. (1995). Damage, conditions of East Java tsunami analyzed, Eos. Transactions of the American Geophysical Union, 76(26), 257–264.CrossRefGoogle Scholar
  154. Synolakis, C. E., Yalçıner, A. C., Borrero, J. C., & Plafker, G. L. (2002). Modeling of the November 3, 1994 Skagway, Alaska tsunami. Solutions to Coastal Disasters. In L. Wallendorf & L. Ewing (Eds.), Proceedings of the American Society of Civil Engineers (Vol. 78, pp. 915–927).Google Scholar
  155. Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., et al. (2002). The slump origin of the 1998 Papua New Guinea tsunami. Proceedings of the Royal Society (London), Series A, 458, 763–789.CrossRefGoogle Scholar
  156. Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves. Proceedings of the Royal Society (London), Series A, 445, 99–112.CrossRefGoogle Scholar
  157. Tadepalli, S., & Synolakis, C. E. (1996). Model for the leading waves of tsunamis. Physical Review Letters, 77, 2141–2145.CrossRefGoogle Scholar
  158. Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23, 861–864.CrossRefGoogle Scholar
  159. Taylor, F. W., Briggs, R. W., Frohlich, C., Brown, A., Hornback, M., Papabatu, A. K., et al. (2008). Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nature Geoscience, 1, 253–257.CrossRefGoogle Scholar
  160. Thomson, R. E., Rabinovich, A. B., Kulikov, E. A., Fine, I. V., & Bornhold, B. D. (2001). On numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska. In G. Hebenstreit (Ed.), Tsunami research at the end of a critical decade (pp. 243–282). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  161. Tinti, S., & Vannini, C. (1995). Tsunami trapping near circular islands. Pure and Applied Geophysics, 144, 595–620.CrossRefGoogle Scholar
  162. Tinti, S., Manucci, A., Pagnoni, G., Armigliato, A., & Zaniboni, F. (2005). The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Natural Hazards Earth Systems Science, 5, 763–775.CrossRefGoogle Scholar
  163. Tinti, S., Armigliato, A., Manucci, A., Pagnoni, G., Zaniboni, F., Yalçıner, A. C., et al. (2006). The generating mechanisms of the August 17, 1999 İzmit Bay (Turkey) tsunami: Regional (tectonic) and local (mass instabilities) causes. Marine Geology, 225, 311–330.CrossRefGoogle Scholar
  164. Titov, V. V., & Synolakis, C. E. (1993). A numerical study of wave run-up of the September 2, 1992 Nicaraguan tsunami. In Y. Tsuchiya & N. Shuto (Eds.), Proceedings of the Tsunami Symposium, International Union of Geology and Geophysics Japan Society of Civil Engineers, (pp. 627–635). Wakayama, Japan.Google Scholar
  165. Titov, V. V., & Synolakis, C. E. (1997). Extreme inundation flow during the Hokkaido-Nansei-Oki tsunami. Geophysical Research Letters, 24, 1315–1318.CrossRefGoogle Scholar
  166. Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal and Ocean Engineering, 124, 157–171.CrossRefGoogle Scholar
  167. Titov, V. V., González, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., et al. (2005). Real-time tsunami forecasting: Challenges and solutions. Natural Hazards, 35, 41–58.CrossRefGoogle Scholar
  168. Titov, V. V., Rabinovich, A. B., Mofjeld, H., Thomson, R. E., & González, F. I. (2005). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048.CrossRefGoogle Scholar
  169. Titov, V. V., Kânoğlu, U., & Synolakis, C. E. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal and Ocean Engineering, 142, 03116004, 16.CrossRefGoogle Scholar
  170. Tsuji, Y., Matsutomi, H., Imamura, F., Takeo, M., Kawata, Y., Matsuyama, M., et al. (1995). Damage to coastal villages due to the 1992 Flores Island earthquake tsunami. Pure and Applied Geophysics, 144, 481–524.CrossRefGoogle Scholar
  171. Tyler, R. H. (2005). A simple formula for estimating the magnetic fields generated by tsunami flow. Geophysical Research Letters, 32(9), L09608, 4 pp.CrossRefGoogle Scholar
  172. Wallace, R. E., Pararas-Carayannis, G., Valenzuela, R., & Taggart, J. N. (1977). Earthquake and tsunamis of August 16, 1976, Mindanao, Philippines. Geological Society of America Abstracts with Program, 9, 523 [abstract].Google Scholar
  173. Ward, S. N. (1980). Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth, 28, 441–474.CrossRefGoogle Scholar
  174. Wang, J., Ward, S. N., & Xiao, L. (2015). Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chebalis Lake, Canada. Geophysical Journal International, 201, 372–376.CrossRefGoogle Scholar
  175. Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos, Transactions of the American Geophysical Union, 72, 441–446.CrossRefGoogle Scholar
  176. Whitmore, P., Benz, H., Bolton, M., Crawford, G., Dengler, L., Fryer, G., et al. (2008). NOAA/West Coast and Alaska Tsunami Warning Center Pacific Ocean response criteria. Science of Tsunami Hazards, 27(2), 1–21.Google Scholar
  177. Ye, L., Kanamori, H., Avouac, J.-P., Li, L., Cheung, K. F., & Lay, T. (2016). The 16 April 2016, \(M_w =7.8\) (\(M_s =7.5\)) Ecuador earthquake: A quasi-repeat of the 1942 \(M_s=7.5\) earthquake and partial re-rupture of the 1906 \(M_s =8.6\) Colombia–Ecuador earthquake. Earth and Planetary Science Letters, 454, 248–258.CrossRefGoogle Scholar
  178. Yeh, H., Imamura, F., Synolakis, C. E., Tsuji, Y., Liu, P. L.-F., & Shi, S. (1993). The Flores Island tsunami. Eos, Transactions of the American Geophysical Union, 74, 369–373.CrossRefGoogle Scholar
  179. Yeh, H., Liu, P. L.-F., Briggs, M., & Synolakis, C. E. (1994). Propagation and amplification of tsunamis at coastal boundaries. Nature, 372, 353–355.CrossRefGoogle Scholar
  180. Yeh, H., Titov, V. V., Gusiakov, V., Pelinovsky, E., Khramushin, V., & Kaistrenko, V. (1995). The 1994 Shikotan tsunamis. Pure and Applied Geophysics, 144, 855–874.CrossRefGoogle Scholar
  181. Yuan, X., Kind, R., & Pedersen, H. (2005). Seismic monitoring of the Indian Ocean tsunami. Geophysical Research Letters, 32(15), L15308, 4 pp.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations