Advertisement

Recognition of Sulfides Zones in Marble Mine Through Comparative Analysis of Electrical Tomography Arrangements

  • César Augusto MoreiraEmail author
  • Evandro Gomes dos Santos
  • Lenon Melo Ilha
  • Renata Paes
Article
  • 9 Downloads

Abstract

This paper involves the use of Induced Polarization method combined with the geological reconnaissance of sulfite rich zones from the comparative analysis of the Dipole–dipole, Schlumberger and Wenner tomographic arrays. The study area comprises a marble mine with metandesites in dykes, sills, and a system of fractures, with enrichment of iron and copper, particularly costly and difficult to explore and study using traditional means of drilling and sampling. In this context, 5 lines of electrical tomography were performed in the three geoelectrical sites previously mentioned. The geophysical data enabled the production of 2D inversion models, later incorporated into 3D visualization models. The correlation between the geological information and the 3D models indicated the characterization of zones with sulfites, with chargeability values over 10 mV/V, and areas without sulfides by values of 1 mV/V. The Dipole–dipole array presented confusing results and anomalous areas displaced regarding the real position. Schlumberger array allowed the correlation between zone with disseminated sulfides and the zone without sulfide mineralization, although it was not possible to identify sulfides in joints and fractures. Wenner arrangement provided a direct correlation of all sulfide and waste zones, possibly due to the horizontal structure of propagation of the electrical and potential fields along the metandesite.

Keywords

Sulfides dipole Schlumberger Wenner chargeability 3D modeling 

Notes

Acknowledgements

The authors are thankful to National Council for Scientific and Technological Development (CNPq), for the financial support whereby process number 470821/2013-2 (Edital Universal—CNPq), and the Pampa Federal University for technical support.

References

  1. ABEM. (2012). Terrameter LS—instruction manual. Sundbyberg: ABEM Instrument.Google Scholar
  2. Alano, M. (1977). Pesquisa de calcário – Caieiras, Caçapava do Sul, RS. Relatório final. Porto Alegre: DNPM.Google Scholar
  3. Allis, R. G. (1990). Geophysical anomalies over epithermal systems. Journal of Geochemical Exploration, 36, 339–374.CrossRefGoogle Scholar
  4. Companhia de Pesquisa e Recursos Minerais - CPRM. (1995). Folha Passo do Salsinho (22-Y-A-I-4), Rio Grande do Sul, escala 1:50.000. Programa Levantamentos Geológicos Básicos do Brasil. Brasília: CPRM.Google Scholar
  5. Companhia de Pesquisa e Recursos Minerais - CPRM. (2000). Folha Cachoeira do Sul, Rio Grande do Sul, escala 1:250.000. Brasília: CPRM.Google Scholar
  6. Côrtes, A. R. P., Moreira, C. A., Veloso, D. I. K., Vieira, L. B., & Bergonzoni, F. A. (2016). Geoelectrical prospecting for a copper-sulfide mineralization in the Camaquã sedimentary basin, Southern Brazil. Geofísica Internacional, 55, 107–117.Google Scholar
  7. Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines. Agronomy Journal, 95, 455–471.CrossRefGoogle Scholar
  8. Dahlin, T. (2000). Short note on electrode charge-up effects in DC resistivity data acquisition using multi-electrode arrangements. Geophysical Prospecting, 48, 181–187.CrossRefGoogle Scholar
  9. Dena, O. S., Griselda, O. C., Doser, D., Leyva, J. E., Rascon, E., Gómez, F., et al. (2012). Using subsurface geophysical methods in flood control: A resistivity survey to define underground storage capacity of a sand body in Ciudad Juárez, Mexico. Geofísica Internacional, 51, 225–249.Google Scholar
  10. Furman, A., Ferre, T. P. A., & Warrick, A. W. (2003). A sensitivity analysis of electrical resistivity tomography arrangement types using analytical element modeling. Vadose Zone Journal, 2, 416–423.CrossRefGoogle Scholar
  11. Idziak, A. F., & Dibuel, R. (2011). Geophysics in mining and environmental protection. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  12. Irvine, R. J., & Smith, M. J. (1990). Geophysical exploration for epithermal gold deposits. Journal of Geochemical Exploration, 36, 375–412.CrossRefGoogle Scholar
  13. Keller, G. V., & Frishknecht, F. (1970). Electrical methods in geophysical prospecting. Oxford: Pergamon Press.Google Scholar
  14. Locke, C. A., Johnson, S. A., Cassidy, J., & Mauk, J. L. (1999). Geophysical exploration of the Puhipuhi epithermal area, Northland, New Zealand. Journal of Geochemical Exploration, 65, 91–109.CrossRefGoogle Scholar
  15. Loke, M. H., & Baker, R. D. (1996). Rapid least squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophysical Prospecting, 44, 131–152.CrossRefGoogle Scholar
  16. Lowrie, W. (2007). Fundamentals of geophysics. New York: Cambridge University Press.CrossRefGoogle Scholar
  17. Ministry of mine and energy—MME. (2009). Perfil do calcário. Brasília: MME.Google Scholar
  18. Ministry of Mines and Energy – MME. (2016). Geologia, Mineração e Transformação Mineral, Brasília: MME. http://www.mme.gov.br/web/guest/secretarias/geologia-mineracao-e-transformacao-mineral/pagina-inicial. Accessed 10 Oct 2018
  19. Moon, C. J., Whateley, M. E. G., & Evans, A. M. (2006). Introduction to mineral exploration. Oxford: Backwell Publishing.Google Scholar
  20. Moreira, C. A., Carrara, A., Helene, L. P. I., Hansen, M. A. F., Malagutti Filho, W., & Dourado, J. C. (2017a). Electrical resistivity tomography (ERT) applied in the detection of inorganic contaminants in suspended aquifer in Leme city (Brazil). Revista Brasileira de Geofísica, 35, 213–225.Google Scholar
  21. Moreira, C. A., Helene, L. P. I., & Côrtes, A. R. P. (2017b). DC resistivity method applied in the monitoring of diesel leakage in a railway accident in São Manuel city, São Paulo State (Brazil). Revista Brasileira de Geofísica, 35, 5–14.Google Scholar
  22. Moreira, C. A., Lopes, S. M., Schweig, C., & Seixas, A. R. (2012). Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul State, Brazil. Revista Brasileira de Geofísica, 30, 169–179.CrossRefGoogle Scholar
  23. Moreira, C. A., Paes, R. A., Ilha, L. M., & Bitencourt, J. C. (2018). Reassessment of copper mineral occurrence through electrical tomography and pseudo 3D modeling in Camaquã Sedimentary Basin. Southern Brazil: Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-018-2019-2.Google Scholar
  24. Moreira, C. A., Reis, S. S., Malagutti Filho, W., & Hansen, M. A. F. (2016). Geoelectric modeling of supergenic manganese occurrence in Heliodora region, southern Minas Gerais. Revista Brasileira de Geofísica, 34, 299–308.CrossRefGoogle Scholar
  25. Mussett, A. E., & Khan, M. A. (2000). Looking into the Earth: An introduction to geological geophysics. New York: Cambridge University Press.CrossRefGoogle Scholar
  26. Nyquist, J. E., Peake, J. S., & Roth, M. J. S. (2007). Comparison of an optimized resistivity arrangement with dipole-dipole soundings in karst terrain. Geophysics, 72, 139–144.CrossRefGoogle Scholar
  27. Oates, J. A. H. (2008). Lime and limestone: chemistry and technology, production and uses. Berlin: Wiley.Google Scholar
  28. Ramalho, E. C., Carvalho, J. P., Gonçalves, R., & Santos, F. A. M. (2012). Understanding the 3D Structure of a Thermal Water Fissured Granite Aquifer by Use of Geophysical Studies. Pure and Applied Geophysics, 169, 2031–2046.CrossRefGoogle Scholar
  29. Samouëlian, A., Cousin, I., Richard, G., Tabbagh, A., & Bruand, A. (2003). Electrical Resistivity Imaging for Detecting Soil Cracking at the centimetric scale. Soil Science Society of America Journal, 67, 1319–1326.CrossRefGoogle Scholar
  30. Sampaio, J. A., & Almeida, S. L. M. (2005). Rochas & Minerais Industriais: Usos e Especificações. Rio de Janeiro: CETEM.Google Scholar
  31. Santos, E. G., Neto, R. O., Abichequer, L. A., Souza, L. E., Marques, R., & Gonçalves, I. G. (2015). Recuperação ambiental na disposição de estéril em mineração de calcário. Revista do Centro de Ciências Naturais e Exatas, 14, 14–32.Google Scholar
  32. Sequeira Gómez, L., & Escolero Fuentes, O. (2010). The application of electrical methods in exploration for ground water resources in the River Malacatoya sub-basin, Nicaragua. Geofísica Internacional, 49, 27–41.Google Scholar
  33. Silva, M. A., Moreira, C. A., Borssatto, K., Ilha, L. M., & Santos, S. F. (2018). Geophysical prospection in tin mineral occurrence associated to greisen in granite São Sepé (RS). REM International Engineering Journal, 71, 183–189.CrossRefGoogle Scholar
  34. Sultan, S. A., Mansour, S. A., Santos, F. M., & Helaly, A. S. (2009). Geophysical exploration for gold and associated minerals, case study: Wadi ElBeida area, South Eastern Desert, Egypt. Journal of Geophysics and Engineering, 6, 345–356.CrossRefGoogle Scholar
  35. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. New York: Cambridge University Press.CrossRefGoogle Scholar
  36. Veloso, D. I. K., Moreira, C. A., & Côrtes, A. R. P. (2015). Integration of geoelectrical methods in the diagnostic of a diesel contaminated site in Santa Ernestina (SP, Brazil). Revista Brasileira de Geofísica, 33(4), 667–676.Google Scholar
  37. Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofísica Internacional, 55, 107–117.Google Scholar
  38. Ward, S. H. (Ed.) (1990) Resistivity and induced polarization methods. In: Geotechnical and environmental geophysics, I: Review and Tutorial. (pp. 147–189) Tulsa, Oklahoma: Society of Exploration Geophysicists.Google Scholar
  39. Wellmer, F. W., Dalheimer, M., & Wagner, M. (2008). Economic evaluations in exploration. Berlin: Springer-Verlag.Google Scholar
  40. Zhou, Q. Y., Shimada, J., & Sato, A. (2001). Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research, 37, 273–285.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geosciences and Exact Sciences Institute (IGCE)São Paulo State University (UNESP)Rio ClaroBrazil
  2. 2.Pampa Federal University, UNIPAMPACaçapava do SulBrazil

Personalised recommendations