Advertisement

A UCM Approach for Forecasting the Seasonal Rainfall Patterns in Coastal Andhra Pradesh, India 1901–2017

  • K. V. Narasimha MurthyEmail author
  • T. Amaranatha Reddy
  • K. Vijaya Kumar
Article
  • 5 Downloads

Abstract

The changes in amount and pattern of seasonal rainfall have a significant impact on agriculture and water resources management in Coastal Andhra Pradesh (CAP) of India. This paper presents modeling and forecasting of the seasonal rainfall patterns in CAP using an unobserved components model (UCM) with the hidden components trend, seasonal, cyclical and irregular. The seasonal rainfall data for CAP were provided by the India Meteorological Department and the analysis for the four rainfall seasons, namely, winter, pre-monsoon, monsoon and post-monsoon. The UCM with deterministic level, deterministic trigonometric seasonal, deterministic cycle and stochastic irregular components is selected from the parsimonious models for forecasting the seasonal rainfall patterns in CAP based on the Bayesian information criterion (BIC), significance tests and statistical fit. The model parameters are obtained by using the maximum likelihood method, and the validity of the selected UCM is determined using normal correlation diagnostics and LJung–Box test statistics for residuals. The forecasting of seasonal rainfall patterns for the years 2018–2020 was carried out with the help of the selected UCM. Further, the UCM forecast reveals that winter rainfall will be around 36.4 mm in 2018, 11.3 mm in 2019 and 54.4 mm in 2020; pre-monsoon rainfall will be 91.3 mm in 2018, 135.1 mm in 2019 and 106.4 mm in 2020; monsoon rainfall will be 686.4 mm in 2018, 663.9 mm in 2019 and 652.9 mm in 2020; post-monsoon rainfall will be 286.2 mm in 2018, 267.9 mm in 2019 and 309.1 mm in 2020.

Keywords

Rainfall UCM BIC LJung–Box test statistics 

Notes

References

  1. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control (3rd ed.). New Jersey: Prentice Hall.Google Scholar
  2. Cryer, J. D., & Chan, K. S. (2008). Time series analysis with application in R (2nd ed.). New York: Springer.Google Scholar
  3. Fomby, T. (2007). The unobserved component model. http://faculty.smu.edu/tfomby/eco5375/data/notes/The%20Unobservable%20Components%20Model.pdf Accessed October 2007.
  4. Gadgil, S., Vinaychandran, P., Francis, P. & Gadgil, S. (2004). Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean Oscillation. Geophysical Research Letters 31, L12, 213 1–4.  https://doi.org/10.1029/2004gl019733.
  5. Harvey, A. C. (2001a). Testing in unobserved components models. Journal of Forecasting, 20, 1–19.CrossRefGoogle Scholar
  6. Harvey, A. C. (2001b). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.Google Scholar
  7. Hazarika, J., Pathak, B., & Patowary, A. N. (2016). Studying monthly rainfall over Dibrugarh, Assam: use of SARIMA approach. Mausam, 68(2), 349–356.Google Scholar
  8. Kaipa Viswanath, N.M., & Ramachandran, S. (2019). Unobservable component modelling of monthly average maximum and minimum temperature patterns in India 1981–2015. Pure and Applied Geophysics, 176, 463.  https://doi.org/10.1007/s00024-018-1970-2.CrossRefGoogle Scholar
  9. Mikkonen, S., Laine, M., Mäkelä, H. M., Gregow, H., Tuomenvirta, H., Lahtinen, M., et al. (2015). Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment, 29, 1521–1529.  https://doi.org/10.1007/s00477-014-0992-2.CrossRefGoogle Scholar
  10. Narasimha Murthy, K.V., Saravana, R., & Rajendra, P. (2018a). Critical comparison of north east monsoon rainfall for different regions through analysis of means technique. MAUSAM, 69(3), 413–420.Google Scholar
  11. Narasimha Murthy, K. V., Saravana, R., & Vijaya Kumar, K. (2018b). Modeling and forecasting rainfall patterns of southwest monsoons in North-East India as a SARIMA process. Meteorology and Atmospheric Physics, 130(1), 99–106.  https://doi.org/10.1007/s00703-017-0504-2.CrossRefGoogle Scholar
  12. Narasimha Murthy, K. V., Saravana, R., & Vijaya Kumar, K. (2018c). Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981–2015. Meteorology and Atmospheric Physics.  https://doi.org/10.1007/s00703-018-0606-5.Google Scholar
  13. Ratna, S. B. (2012). Summer Monsoon Rainfall Variability Over Maharashtra, India. Pure and Applied Geophysics, 169, 259.  https://doi.org/10.1007/s00024-011-0276-4.CrossRefGoogle Scholar
  14. SAS Institute Inc. (2014) SAS/ETS ® 13.2 User’s Guide, The UCM Procedure. SAS/ETS ® 13.2 User’s Guide. Cary, NC: SAS Institute Inc.Google Scholar
  15. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  16. Srivastava, A. K., Rajeevan, M., & Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters, 10(4), 249–254.Google Scholar
  17. Stoffer, D. S., & Shumway, R. H. (2010). Time series analysis and its application (3rd edn.) (Vol. 10, p. 1441978658). New York: Springer.Google Scholar
  18. West, M., & Harrision, J. (1999). Bayesian forecasting and dynamic models (2nd ed.). New York: Springer.Google Scholar
  19. Young, P. C. (2011). Unobserved component models. In: Recursive estimation and time-series analysis. Berlin: Springer.  https://doi.org/10.1007/978-3-642-21981-8_5.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsMadanapalle Institute of Technology and ScienceMadanapalleIndia
  2. 2.Department of PhysicsAditya College of EngineeringMadanapalleIndia
  3. 3.Department of StatisticsS. G. S. Arts & Science CollegeTirupatiIndia

Personalised recommendations