Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 5141–5160 | Cite as

Analysis of the Trends in Observed Extreme Temperatures in Mainland Chile Between 1966 and 2015 Using Different Indices

  • Oliver Meseguer-RuizEmail author
  • Oscar Corvacho
  • Alejandro Tapia Tosetti
  • José F. López-Cepeda
  • Pablo Sarricolea
Article
  • 74 Downloads

Abstract

Air temperature records provide strong evidence of change and variability in the climate system. The sensitivity of temperature to changes throughout the year renders it an ideal object of study when seeking to identify trends and changes in the frequency of extreme events. This study analyses temperature records from 18 stations in mainland Chile. By applying Mann–Kendall’s non-parametric test to the data series and calculating specific extreme temperature indices, it is possible to identify significant trends in the series recorded from 1966 to 2015. The results show positive trends for both the minimum and maximum temperature series, although they are more marked for the former, especially during the warm months. The trend analysis of the extreme indices proposed by the Expert Team on Climate Change Detection and Indices, when applied to the data from the stations studied, suggests that there has been an increase in the frequency and intensity of warm extremes, whereas cold events manifest a negative trend, revealing differences between meteorological stations located in the north of mainland Chile and those in the centre and south.

Keywords

Extreme temperatures temperature trends Mann–Kendall mainland Chile 

Notes

Acknowledgements

The authors would like to thank the Dirección Meteorológica de Chile for the meteorological data. They would also like to thank the FONDECYT project 11160059 (Chilean government), the CLICES project (CGL2017-83866-C3-2-R) and the climatology group (2017SGR1362, Catalan government) for the institutional support.

References

  1. Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research,111, D0510.  https://doi.org/10.1029/2005JD006290.CrossRefGoogle Scholar
  2. Bennett, M., New, M., Marino, J., & Sillero-Zubiri, C. (2016). Climate complexity in the central Andes: a study case on empirically based local variations in the dry Puna. Journal of Arid Environments,128, 40–49.  https://doi.org/10.1016/j.jaridenv.2016.01.004.CrossRefGoogle Scholar
  3. Blain, G. C. (2013). The Mann–Kendall test: the need to consider the interaction between serial correlation and trend. Acta Scientiarum. Agronomy,35(4), 393–402.  https://doi.org/10.4025/actasciagron.v35i4.16006.CrossRefGoogle Scholar
  4. Bradley, R. S., Keimig, F. T., Diaz, H. F., & Hardy, D. R. (2009). Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophysical Research Letters,36, L17701.  https://doi.org/10.1029/2009GL037712.CrossRefGoogle Scholar
  5. Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M., & Nanni, T. (2004). Temperature, precipitation and extreme events during the last century in Italy. Global and Planetary Change,40, 141–149.  https://doi.org/10.1016/S0921-8181(03)00104-8.CrossRefGoogle Scholar
  6. Brunetti, M., Maugeri, M., Monti, F., & Nanni, T. (2006). Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. International Journal of Climatology,26, 345–381.  https://doi.org/10.1002/joc.1251.CrossRefGoogle Scholar
  7. Bustos, E., & Meza, F. J. (2015). A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: application to the Maipo Basin, Chile. Theoretical and Applied Climatology,120(1–2), 211–226.  https://doi.org/10.1007/s00704-014-1167-2.CrossRefGoogle Scholar
  8. Caloiero, T. (2017). Trend of monthly and daily data extreme temperature during 1951–2012 in New Zealand. Theoretical and Applied Climatology,129, 111–127.  https://doi.org/10.1007/s00704-016-1764-3.CrossRefGoogle Scholar
  9. Caloiero, T., Coscarelli, R., Ferrari, E., & Sirangelo, B. (2017). Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. International Journal of Climatology,37(S1), 284–297.  https://doi.org/10.1002/joc.5003.CrossRefGoogle Scholar
  10. Collins, D. A., Della-Marta, P. M., Plummer, N., & Trewin, B. C. (2000). Trends in annual frequencies of extreme temperature events in Australia. Australian Meteorological Magazine,49, 277–292.Google Scholar
  11. Craddock, J. M. (1979). Methods of comparing annual rainfall records for climatic purposes. Weather,34, 332–346.CrossRefGoogle Scholar
  12. Del Rio, S., Cano-Ortiz, A., Herrero, L., & Penas, A. P. (2012). Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theoretical and Applied Climatology,109, 605–626.  https://doi.org/10.1007/s00704-012-0593-2.CrossRefGoogle Scholar
  13. Falvey, M., & Garreaud, R. D. (2009). Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). Journal of Geophysical Research,114, D04102.  https://doi.org/10.1029/2008JD010519.CrossRefGoogle Scholar
  14. Frich, P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A. M. G., et al. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research,19, 193–212.  https://doi.org/10.3354/cr019193.CrossRefGoogle Scholar
  15. Fuenzalida-Ponce, H. (1971). Climatología de Chile. Santiago: Departamento de Geofísica, Universidad de Chile.Google Scholar
  16. Guan, Y., Zhang, X., Zheng, F., & Wang, B. (2015). Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River basin, China. Global and Planetary Change,124, 79–94.  https://doi.org/10.1016/j.gloplacha.2014.11.008.CrossRefGoogle Scholar
  17. Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology,28, 423–443.CrossRefGoogle Scholar
  18. IPCC. (2014). Summary for policymakers, fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  19. Katz, R. W., & Brown, B. G. (1992). Extreme events in a changing climate: variability is more important than averages. Climatic Change,21, 289–302.  https://doi.org/10.1007/BF00139728.CrossRefGoogle Scholar
  20. Keellings, D., & Waylen, P. (2012). The stochastic properties of high daily maximum temperatures applying crossing theory to modelling high-temperature event variables. Theoretical and Applied Climatology,108, 579–590.  https://doi.org/10.1007/s00704-011-0553-2.CrossRefGoogle Scholar
  21. Kendall, M. G. (1962). Rank correlation methods. New York: Hafner Publishing Company.Google Scholar
  22. Klein Tank, A. M. G., & Können, G. P. (2003). Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. Journal of Climate,16, 3665–3680.  https://doi.org/10.1175/1520-0442(2003)016%3c3665:TIIODT%3e2.0.CO;2.CrossRefGoogle Scholar
  23. Klein Tank, A. M. G., Wijngaard, J. B., Koennen, G. P., Boehm, R., Demaree, G., Gocheva, A., et al. (2002). Daily surface air temperature and precipitation dataset 1901–1999 for European climate assessment (ECA). International Journal of Climatology,22(12), 1441–1453.  https://doi.org/10.1002/joc.773.CrossRefGoogle Scholar
  24. Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., et al. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research,111, D16105.  https://doi.org/10.1029/2005JD006316.CrossRefGoogle Scholar
  25. Klok, E. J., & Tank, A. (2009). Updated and extended European dataset of daily climate observations. International Journal of Climatology,29, 1182–1191.  https://doi.org/10.1002/joc.1779.CrossRefGoogle Scholar
  26. Kunkel, K. E., Pielke, R. A., & Changnon, S. A. (1999). Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bulletin of the American Meteorological Society,80, 1077–1098.  https://doi.org/10.1175/1520-0477(1999)080%3c1077:TFIWAC%3e2.0.CO;2.CrossRefGoogle Scholar
  27. Labat, D., Goddéris, Y., Probst, J. L., & Guyot, J. L. (2004). Evidence for global runoff increase related to climate warming. Advances in Water Resources,27, 631–642.  https://doi.org/10.1016/j.advwatres.2004.02.020.CrossRefGoogle Scholar
  28. Lavado Casimiro, W. S., Labat, D., Ronchail, J., Espinoza, J. C., & Guyot, J. L. (2013). Trends in rainfall and temperature in the Peruvian Amazon–Andes basin over the last 40 years (1965–2007). Hydrological Processes,41, 2944–2957.  https://doi.org/10.1002/hyp.9418.CrossRefGoogle Scholar
  29. Liang, K., Bai, P., Li, J. J., & Liu, C. M. (2014). Variability of temperature extremes in the Yellow River basin during 1961–2011. Quaternary International,336, 52–64.  https://doi.org/10.1016/j.quaint.2014.02.007.CrossRefGoogle Scholar
  30. Liao, E., Lu, W., Yan, X. H., Jiang, Y., & Kidwell, A. (2015). The coastal ocean response to the global warming acceleration and hiatus. Scientific Reports,5, 16630.  https://doi.org/10.1038/srep16630.CrossRefGoogle Scholar
  31. Loáiciga, H. A., Valdes, J. B., Vogel, R., Garvey, J., & Schwarz, H. (1996). Global warming and the hydrological cycle. Journal of Hydrology,174, 83–127.  https://doi.org/10.1016/0022-1694(95)02753-X.CrossRefGoogle Scholar
  32. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica,13, 245–259.  https://doi.org/10.2307/1907187.CrossRefGoogle Scholar
  33. Marengo, J. A., Pabón, J. D., Díaz, A., Rosas, G., Ávalos, G., Montealegre, E., et al. (2011). Climate change: evidence and future scenarios for the Andean region. In S. K. Herzog, R. Martínez, P. M. Jorgensen, & H. Tiessen (Eds.), Climate change and biodiversity in the tropical Andes (pp. 110–127). Sao Paulo: IAI/SCOPE Publications.Google Scholar
  34. Peterson, T. C., Taylor, M. A., Demeritte, R., Duncombe, D. L., Burton, S., Thompson, F., et al. (2002). Recent changes in climate extremes in the Caribbean region. Journal of Geophysical Research,107, 4601.  https://doi.org/10.1029/2002JD002251.CrossRefGoogle Scholar
  35. Piticar, A. (2018). Changes in heat waves in Chile. Global and Planetary Change,169, 234–246.  https://doi.org/10.1016/j.gloplacha.2018.08.007.CrossRefGoogle Scholar
  36. Plummer, N., Salinger, M. J., Nicholls, N., Suppiah, R., Hennessy, K. J., Leighton, R. M., et al. (1999). Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Climatic Change,42, 183–202.  https://doi.org/10.1023/A:1005472418209.CrossRefGoogle Scholar
  37. Poveda, G., & Pineda, K. (2009). Reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade? Advances in Geosciences,22, 107–116.  https://doi.org/10.5194/adgeo-22-107-2009.CrossRefGoogle Scholar
  38. Raso, J. M., & Peña, J. C. (2013). La necesidad de soporte a la población de Barcelona ante el impacto potencial de un incremento climático de la temperatura ambiente. Polígonos. Revista de Geografía,24, 95–131.  https://doi.org/10.18002/pol.v0i24.843.CrossRefGoogle Scholar
  39. Rosenblüth, B., Fuenzalida, H. A., & Aceituno, P. (1997). Recent temperature variations in southern South America. International Journal of Climatology,17(1), 67–85.  https://doi.org/10.1002/(SICI)1097-0088(199701)17:1%3c67:AID-JOC120%3e3.0.CO;2-G.CrossRefGoogle Scholar
  40. Salinger, M. J. (1995). Southwest Pacific temperatures: trends in maximum and minimum temperatures. Atmospheric Research,37(1–3), 87–99.  https://doi.org/10.1016/0169-8095(94)00071-K.CrossRefGoogle Scholar
  41. Salinger, M. J., & Griffiths, G. M. (2001). Trends in New Zealand daily temperature and rainfall extremes. International Journal of Climatology,21, 1437–1452.  https://doi.org/10.1002/joc.694.CrossRefGoogle Scholar
  42. Salzmann, N., Huggel, C., Rohrer, M., Silverio, W., Mark, B. G., Burns, P., et al. (2013). Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere,7, 103–118.  https://doi.org/10.5194/tc-7-103-2013.CrossRefGoogle Scholar
  43. Sarricolea, P., & Romero, H. (2015). Variabilidad y cambios climáticos observados y esperados en el Altiplano del norte de Chile. Revista de Geografía Norte Grande,62, 169–183.  https://doi.org/10.4067/S0718-34022015000300010.CrossRefGoogle Scholar
  44. Sarricolea, P., Meseguer-Ruiz, O., & Martín-Vide, J. (2014). Variabilidad y tendencias climáticas en Chile central en el período 1950–2010 mediante la determinación de los tipos sinópticos de Jenkinson y Collison. Boletín de la Asocación de Geógrafos Españoles,64, 227–247.Google Scholar
  45. Sarricolea, P., Herrera-Ossandon, M., & Meseguer-Ruiz, O. (2017). Climatic regionalisation of continental Chile. Journal of Maps,13(2), 66–73.  https://doi.org/10.1080/17445647.2016.1259592.CrossRefGoogle Scholar
  46. Schulz, N., Boisier, J. P., & Aceituno, P. (2011). Climate change along the arid coast of northern Chile. International Journal of Climatology,32, 1803–1814.  https://doi.org/10.1002/joc.2395.CrossRefGoogle Scholar
  47. Seiler, C., Hutjes, R. W. A., & Kabat, P. (2013). Climate variability and trends in Bolivia. Journal of Applied Meteorology and Climatology,52, 1303–1317.  https://doi.org/10.1175/JAMC-D-12-0105.1.CrossRefGoogle Scholar
  48. Skansi, M. M., Brunet, M., Sigró, J., Aguilar, E., Groening, J. A. A., Bentancur, O. J., et al. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change,100, 295–307.  https://doi.org/10.1016/j.gloplacha.2012.11.004.CrossRefGoogle Scholar
  49. Thibeault, J. M., Seth, A., & Garcia, M. (2010). Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. Journal of Geophysical Research,115, D08103.  https://doi.org/10.1029/2009JD012718.CrossRefGoogle Scholar
  50. Tian, J., Liu, J., Wang, J., Li, C., Nie, H., & Yu, F. (2017). Trend analysis of temperature and precipitation extremes in major grain producing area of China. International Journal of Climatology,37(2), 672–687.  https://doi.org/10.1002/joc.4732.CrossRefGoogle Scholar
  51. Toreti, A., & Desiato, F. (2008). Temperature trend over Italy from 1961 to 2004. Theoretical and Applied Climatology,91, 51–58.  https://doi.org/10.1007/s00704-006-0289-6.CrossRefGoogle Scholar
  52. Valdés-Pineda, R., Valdés, J. B., Diaz, H. F., & Pizarro-Tapia, R. (2015). Analysis of spatio–temporal changes in annual and seasonal precipitation variability in South America–Chile and related ocean-atmosphere circulation patterns. International Journal of Climatology,36(8), 2979–3001.  https://doi.org/10.1002/joc.4532.CrossRefGoogle Scholar
  53. Villarroel Jiménez CP (2013) Eventos extremos de precipitación y temperatura en Chile: proyecciones para fines del siglo XXI. Tesis de Magíster. Santiago: Departamento de Geofísica, Universidad de Chile.Google Scholar
  54. Vose, R. S., Easterling, D. R., & Gleason, B. (2005). Maximum and minimum temperature trends for the globe: an update through 2004. Geophysical Research Letters,32, L23822.  https://doi.org/10.1029/2005GL024379.CrossRefGoogle Scholar
  55. Vuille, M., & Bradley, R. S. (2000). Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters,27, 3885–3888.  https://doi.org/10.1029/2000GL011871.CrossRefGoogle Scholar
  56. Vuille, M., Bradley, R. S., Werner, M., & Keimig, F. (2003). 20th century climate change in the tropical Andes: observations and model results. Climatic Change,59(1–2), 75–99.  https://doi.org/10.1029/2000GL011871.CrossRefGoogle Scholar
  57. Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., et al. (2008). Climate change and tropical Andean glaciers: past, present and future. Earth-Science Reviews,89, 79–96.  https://doi.org/10.1016/j.earscirev.2008.04.002.CrossRefGoogle Scholar
  58. Vuille, M., Franquist, E., Garreaud, R., Casimiro, W. S. L., & Cáceres, B. (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmosphere,120(9), 3745–3757.  https://doi.org/10.1002/2015JD023126.CrossRefGoogle Scholar
  59. Ye, L., Yang, G., Van Ranst, E., & Tang, H. (2013). Time-series modelling and prediction of global monthly absolute temperature for environmental decision making. Advances in Atmospheric Sciences,30, 382–396.  https://doi.org/10.1007/s00376-012-1252-3.CrossRefGoogle Scholar
  60. Zhai, P. M., Zhang, X. B., Wan, H., & Pan, X. H. (2005). Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate,18, 1096–1108.  https://doi.org/10.1175/JCLI-3318.1.CrossRefGoogle Scholar
  61. Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., et al. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change,2, 851–870.  https://doi.org/10.1002/wcc.147.CrossRefGoogle Scholar
  62. Zhao, Y., Feng, D., Yu, L., Wang, X., Chen, Y., Bai, Y., et al. (2016). Detailed dynamic land cover mapping of Chile: accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment,183, 170–185.  https://doi.org/10.1016/j.rse.2016.05.016.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias Históricas y GeográficasUniversidad de TarapacáAricaChile
  2. 2.Programa de DoctoradoPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Department of GeographyUniversity of ChileSantiagoChile

Personalised recommendations