Advertisement

Intensity Attenuation Model Evaluation for Bangladesh with Respect to the Surrounding Potential Seismotectonic Regimes

  • Dewan Mohammad Enamul HaqueEmail author
  • Sara Hanan Chowdhury
  • Nawar Wadud Khan
Article
  • 27 Downloads

Abstract

An effort has been made through this study to evaluate the existing intensity attenuation model (IPE) for the potential seismotectonic regimes in and around Bangladesh. To reach the goal, the seismicity of the concerned tectonic regimes has been analyzed. Apart from evaluating the appropriate intensity model, this research has also assessed the predictive performance of epicentral intensity estimation. Different magnitude types have been made uniform by converting into moment magnitude and subsequently into the Modified Mercalli Intensity scale (MMI). The epicentral intensity conversion following Li in Chinese Earthquakes (Seismological Press, Beijing, 1980) fits best for the study area among the utilized four predictive equations. The epicentral intensity conversion from the moment magnitude shows that small to moderate earthquakes get significantly overestimated. Suitable attenuation models have been applied to the different tectonic regimes based on the criteria of using the IPEs. Among all the utilized IPEs, the relation of  Bakun et al. (Bull Seismol Soc Am 93:190–202, 2003) exhibits the highest standard deviation (σ = 1.61) in attenuation with distance. Although the Szeliga et al.’s (Bull Seismol Soc Am 100(2):570–584, 2010) attenuation relation has a standard deviation of 1.22, the intensity decay is little even for the greater distance (~ 800–900 km). Up to Mw 7.0, the IPE of Bindi et al. (Geophys J Int 187(1):327–337, 2011) shows realistic attenuation scenario (with σ = 1.3); however, at lower magnitude range (< Mw 7.0), the intensity starts to decay sharply. Still, the IPE of Bindi et al. (2011) is more realistic in comparison of the shakemaps of the past and in terms of convincible intensity decay with greater distance (~ 500–900 km). However, the intensity close to the epicenter gets very high MMI (XI or larger) value for the major events (Mw ≥ 8.5). Although the IPE of Chandler and Lam (J Asian Earth Sci 20(7):775–790, 2002) has distance constraints, its performance is acceptable considering the attenuation scenario with distance along with the lowest standard deviation (~ 0.92). Considering the seismic events from the only strike-slip Churachandpur Mao fault of the study area, Bakun and Wentworth (Bull Seismol Soc Am 87(6):1502–1521, 1997) relation has been applied to determine the attenuation pattern.

Keywords

Intensity attenuation model epicentral intensity potential seismotectonic zones attenuation model selection criteria 

Notes

References

  1. Abrahamson, N. A., & Shedlock, K. M. (1997). Overview. Seismological Research Letters, 68(1), 9–23.CrossRefGoogle Scholar
  2. Abrahamson, N. A., & Silva, W. J. (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismological Research Letters, 68(1), 94.CrossRefGoogle Scholar
  3. Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a − b M and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237–239.Google Scholar
  4. Allen, T. I., & Wald, D. J. (2009). Evaluation of ground-motion modeling techniques for use in global ShakeMap—a critique of instrumental ground-motion prediction equations, peak ground motion to macroseismic intensity conversions, and macroseismic intensity predictions in different tecto. U.S. geological survey open-file report, 2009 (1047). Retrieved from https://pubs.usgs.gov/of/2009/1047/pdf/OF09-1047.pdf. Accessed 15 Aug 2018.
  5. Allen, T. I., Wald, D. J., & Worden, C. B. (2012). Intensity attenuation for active crustal regions. Journal of Seismology, 16(3), 409–433.  https://doi.org/10.1007/s10950-012-9278-7.CrossRefGoogle Scholar
  6. Ambraseys, N. N. (2004). Three little known early earthquakes in India. Current Science, 86(4), 506–508.Google Scholar
  7. Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206.  https://doi.org/10.1111/j.1365-246X.2004.02323.x.CrossRefGoogle Scholar
  8. Atkinson, G. M., & Boore, D. M. (1995). Ground-motion relations for eastern north America. Bulletin of the Seismological Society of America, 85(1), 17–30.  https://doi.org/10.1785/0120050245.Google Scholar
  9. Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 1703–1729.  https://doi.org/10.1785/0120080108.CrossRefGoogle Scholar
  10. Atkinson, G. M., Bruce Worden, C., & Wald, D. J. (2014). Intensity prediction equations for North America. Bulletin of the Seismological Society of America, 104(6), 3084–3093.  https://doi.org/10.1785/0120140178.CrossRefGoogle Scholar
  11. Atkinson, G. M., & Wald, D. J. (2007). Good measure of earthquake ground motion. Seismological Research Letters, 78(June), 362–368.CrossRefGoogle Scholar
  12. Baker, J. W. (2008). An Introduction to Probabilistic Seismic Hazard Analysis (PSHA). Retrieved from https://web.stanford.edu/~bakerjw/Publications/Baker_(2008)_Intro_to_PSHA_v1_3.pdf. Accessed 31 May 2019.
  13. Bakun, W. H. (2006). MMI attenuation and historical earthquakes in the Basin and Range Province of Western North America. Bulletin of the Seismological Society of America, 96(6), 2206–2220.CrossRefGoogle Scholar
  14. Bakun, W. H., Johnston A. C., & Hopper, M. G. (2003). Estimating location and magnitude of earthquakes in Eastern North America from modified Mercalli intensity, Bulletin of Seismological Society of America, 93, 190–202.CrossRefGoogle Scholar
  15. Bakun, W. H., & Scotti, O (2006). Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophysical Journal International, 164, 596–610.CrossRefGoogle Scholar
  16. Bakun, W. H., & Wentworth, C. M. (1997). Estimating earthquake location and magnitude from seismic intensity data. Bulletin of the Seismological Society of America, 87(6), 1502–1521.Google Scholar
  17. Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America, 73, 831–851.Google Scholar
  18. Bilham, R. (2004). Historical studies of earthquakes in India. University of Colorado Boulder, pp. 1–26.Google Scholar
  19. Bilham, R. (2009). The seismic future of cities. Bulletin of Earthquake Engineering, 7(4), 839–887.  https://doi.org/10.1007/s10518-009-9147-0.CrossRefGoogle Scholar
  20. Bindi, D., Parolai, S., Oth, A., Abdrakhmatov, K., Muraliev, A., & Zschau, J. (2011). Intensity prediction equations for Central Asia. Geophysical Journal International, 187(1), 327–337.  https://doi.org/10.1111/j.1365-246X.2011.05142.x.CrossRefGoogle Scholar
  21. Bindi, D., et al. (2014). Empirical ground-motion prediction equations for northwestern Turkey using the aftershocks of the 1999 Kocaeli earthquake . Geophysical Research Letters.  https://doi.org/10.1029/2007GL029222.Google Scholar
  22. Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926.  https://doi.org/10.1785/0120100111.CrossRefGoogle Scholar
  23. Bormann, P. (2009). New manual of IASPEI seismological observatory practice. New manual of IASPEI seismological observatory practice (NMSOPM), 1 Chapter (2002) (Vol. 1162).  https://doi.org/10.2312/GFZ.NMSOP.
  24. Campbell, K. W., & Bozorgnia, Y. (2006). Next generation attenuation (NGA) empirical ground motion models: can they be used in Europe. First European conference on earthquake engineering and seismology, (3–8 September, paper no. 458) (Vol. 10). Retrieved from http://peer.berkeley.edu/products/nga_selected_publications/1ECEES_NGA_Campbell_Paper_458.pdf. Accessed 15 Aug 2018.
  25. Chandler, A. M., & Lam, N. T. K. (2002). Intensity attenuation relationship for the South China region and comparison with the component attenuation model. Journal of Asian Earth Sciences, 20(7), 775–790.  https://doi.org/10.1016/S1367-9120(01)00054-2.CrossRefGoogle Scholar
  26. Christophersen, A. K. B., & Litchfield, N. (2015). The GEM faulted earth project. GEM Technical Report, vol. 02. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.5675&rep=rep1&type=pdf. Accessed 31 May 2019.
  27. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.  https://doi.org/10.1016/0167-6105(83)90143-5.Google Scholar
  28. Cua, G., Wald, D. J., Allen, T. I., Garcia, D., Worden, C. B., Gerstenberger, M., Marano, K. (2010). “Best Practices” for using macroseismic intensity and ground motion intensity conversion equations for hazard and loss models in GEM1. GEM Technical Report, 10 (September 2017).Google Scholar
  29. Dowrick, D. J., & Rhodes, D. A. (2005). Revised models for attenuation of modified Mercalli Intensity in New Zealand earthquakes. New Zealand Society for Earthquake Engineering, 38, 185–214.Google Scholar
  30. Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall/CRC. ISBN 0-412-04231-2.Google Scholar
  31. Garnder, J. K., & Knopoff, L. (1974). Bulletin of the Seismological Society of America. Bulletin of the Seismological Society of America, 64(5), 1271–1302.  https://doi.org/10.1785/0120160029.Google Scholar
  32. Mahajan, A. K., & Ghosh G. K. (2011). Interpretation of intensity attenuation relation of 1905 Kangra earthquake with epicentral distance and magnitude in the Northwest Himalayan Region. Journal Geological Society of India, 77, 511–520.CrossRefGoogle Scholar
  33. GOB. (2009). Time-predictable fault modeling of Bangladesh. A scientific report prepared by Comprehensive Disaster Management Programme of Government of the People’s Republic of Bangladesh (GOB).Google Scholar
  34. Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y., Campbell, K. W., et al. (2014). Comparison of NGA-West2 GMPEs. Earthquake Spectra, 30(3), 1179–1197.  https://doi.org/10.1193/070113EQS186M.CrossRefGoogle Scholar
  35. Grünthal, G. (1998). Cahiers du Centre Européen de Géodynamique et de Séismologie: Volume 15–European Macroseismic Scale 1998. European Center for Geodynamics and Seismology. Retrieved from http://www.franceseisme.fr/EMS98_Original_english.pdf. Accessed 31 May 2019.
  36. Grünthal, G., & Stromeyer, D. (2014). Harmonization check of Mw within the central, northern, and northwestern European earthquake catalogue. Journal of Seismology, 13, 613–632.  https://doi.org/10.1007/s10950-009-9154-2.CrossRefGoogle Scholar
  37. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.Google Scholar
  38. Gutenberg, B., & Richter, C. F. (1945). Seismicity of the earth. Bulletin of the Geological Society of America, 56(6), 603–667.  https://doi.org/10.1130/0016-7606(1945)56%5b603:SOTE%5d2.0.CO;2.CrossRefGoogle Scholar
  39. Hanks, T. C., Kanamori, H. (1979). A Moment Magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2349.   https://doi.org/10.1029/JB084iB05p02348 CrossRefGoogle Scholar
  40. Heaton, T. H., & Tajima, F. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics, 8, 25–83.CrossRefGoogle Scholar
  41. Islam, M. S., Huda, M. M., Al-noman, M. N., & Al-hussaini, T. M. (2010). Attenuation of earthquake intensity in Bangladesh. In Proceedings, 3rd international earthquake symposium, Bangladesh, Dhaka, March 56 2010.Google Scholar
  42. Kadirioğlu, F. T., & Kartal, R. F. (2016). The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish Journal of Earth Sciences, 25(4), 300–310.  https://doi.org/10.3906/yer-1511-7.CrossRefGoogle Scholar
  43. Krammer, S. L. (1994). Geotechnical Earthquake Engineering. New Jersey: Prentice Hall. ISBN: 0-13-374943-6.Google Scholar
  44. Kumar, S., Wesnousky, S. G., Jayangondaperumal, R., Nakata, T., Kumahara, Y., & Singh, V. (2010). Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes. Journal of Geophysical Research, 1(4), 1–30.Google Scholar
  45. Lagomarsino, S., & Giovinazzi, S. (2006). Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering, 4(4), 415–443.  https://doi.org/10.1007/s10518-006-9024-z.CrossRefGoogle Scholar
  46. Li, S. B. (1980). Chinese earthquakes. Beijing: Seismological Press.Google Scholar
  47. Makropoulos, K. C., & Burton, P. W. (1983). Seismic risk of circum-pacific earthquakes I. Strain energy release. Pure and Applied Geophysics PAGEOPH.  https://doi.org/10.1007/BF02590137.Google Scholar
  48. Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America, 100(2), 562–569.  https://doi.org/10.1785/0120080328.CrossRefGoogle Scholar
  49. Marzocchi, W., & Sandri, L. (2003). A review and new insights on the estimation of the b-value and its uncertainty. Annals of Geophysics, 46(6), 1271–1282.  https://doi.org/10.4401/ag-3472.Google Scholar
  50. Musson, R. M. W. (1999). Probabilistic seismic hazard maps for the north Balkan region. Annals of Geophysics.  https://doi.org/10.4401/ag-3772.Google Scholar
  51. Musson, R. M. W., Grünthal, G., & Stucchi, M. (2010). The comparison of macroseismic intensity scales. Journal of Seismology, 14(2), 413–428.  https://doi.org/10.1007/s10950-009-9172-0.CrossRefGoogle Scholar
  52. Ornthammarath, T., Warnitchai, P., Worakanchana, K., Zaman, S., Sigbjörnsson, R., & Lai, C. G. (2011). Probabilistic seismic hazard assessment for Thailand. Bulletin of Earthquake Engineering, 9(2), 367–394.  https://doi.org/10.1007/s10518-010-9197-3.CrossRefGoogle Scholar
  53. Pasolini, C., Gasperini, P., Albarello, D., Lolli, B., & D’Amico, V. (2008). The attenuation of seismic intensity in Italy, Part I: theoretical and empirical backgrounds. Bulletin of the Seismological Society of America, 98(2), 682–691.  https://doi.org/10.1785/0120070020.CrossRefGoogle Scholar
  54. Prajapati, S., Kumar, A., & Chopra, S. (2013). Intensity map of Mw 6.9 2011 Sikkim–Nepal border earthquake and its relationships with PGA: Distance and magnitude. Natural Hazards, Springer.  https://doi.org/10.1007/s11069-013-0776-x.Google Scholar
  55. Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10(2), 225–236.  https://doi.org/10.1007/s10950-006-9012-4.CrossRefGoogle Scholar
  56. Silva, V., Crowley, H., Pagani, M., Monelli, D., & Pinho, R. (2014). Development of the OpenQuake engine, the global earthquake model’s open-source software for seismic risk assessment. Natural Hazards, 72(3), 1409–1427.  https://doi.org/10.1007/s11069-013-0618-x.CrossRefGoogle Scholar
  57. Singh, N. N., Deviprasad, B. S., Kumar, G. K., & Hari Krishna, P. (2015). Analysis of earthquake catalogue for seismic hazard analysis of Warangal city. Discovery, 41, 136–142.Google Scholar
  58. Sipkin, S. A. (2003). A correlation to body-wave magnitude mb based on Moment Magnitude Mw. Seismological Reserch Letters, 74(6), 739–742.CrossRefGoogle Scholar
  59. Sørensen, M. B., Stromeyer, D., & Grünthal, G. (2009). Attenuation of macroseismic intensity: A new relation for the Marmara sea region, Northwest Turkey. Bulletin of the Seismological Society of America, 99(2 A), 538–553.  https://doi.org/10.1785/0120080299.CrossRefGoogle Scholar
  60. Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., et al. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman ranges. Nature Geoscience, 9(8), 615–618.  https://doi.org/10.1038/ngeo2760.CrossRefGoogle Scholar
  61. Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st international conference on microzonazion, Seattle (Vol. 2, pp. 897–910).Google Scholar
  62. Stirling, M., & Goded, T. (2012). Magnitude scaling relationships. Report produced for the GEM faulted earth & regionalisation global componets, GNS science miscellaneous series (Vol. 42).Google Scholar
  63. Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters, 81(6), 941–950.  https://doi.org/10.1785/gssrl.81.6.941.CrossRefGoogle Scholar
  64. Szeliga, W., Hough, S., Martin, S., & Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bulletin of the Seismological Society of America, 100(2), 570–584.  https://doi.org/10.1785/0120080329.CrossRefGoogle Scholar
  65. Trauth, M. H., Gebbers, R., & Marwan, N. (2007). MATLAB recipes for earth sciences, 2nd edition.  https://doi.org/10.1007/978-3-540-72749-1.
  66. Wang, Y., Sieh, K., Tun, S. T., Lai, K. -Y., & Myint, T. (2014). Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119, 3767–3822.  https://doi.org/10.1002/2013JB010762.CrossRefGoogle Scholar
  67. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.Google Scholar
  68. Wood, H. O., & Neumann, F. (1931). Modified Mercalli Intensity scale of 1931. Bulletin of the Seismological Society of America, 21(4), 277–283.Google Scholar
  69. Youngs, R. R., et al. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73.CrossRefGoogle Scholar
  70. Yu, W., & Sieh, K. (2013). Active tectonic features that pose a seismic threat to Bangladesh. A report published by Comprehensive Disaster Management ProgrammeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Disaster Science and Management, Faculty of Earth and Environmental SciencesUniversity of DhakaDhakaBangladesh

Personalised recommendations