Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 11, pp 4861–4879 | Cite as

The High-Frequency Decay Parameter (Kappa) in Taiwan

  • Shun-Chiang Chang
  • Kuo-Liang WenEmail author
  • Ming-Wey Huang
  • Chun-Hsiang Kuo
  • Che-Min Lin
  • Chun-Te Chen
  • Jyun-Yan Huang
Article

Abstract

The high-frequency decay parameter kappa (κ) was computed by fitting Fourier amplitude spectra from the seismic network of the Taiwan Strong Motion Instrumentation Program (TSMIP). The κ of shear horizontal waves (SH waves) was calculated for individual recordings, and the relationship between κ values and the epicentral distance (Repi) of each station was derived for each station. The κ value at Repi = 0 (denoted as κ0) can be used as a site parameter. There are totally 26,277 seismograms that have been recorded at 679 TSMIP stations over the period of 1993 through 2014 with local magnitudes of 4.0–7.1 and focal depths less than 30 km. The estimation of κ0 for Taiwan ranges from 0.0208 to 0.147 s, and the spatial distribution of κ0 was closely related to geology and velocity. The site-specific κ0 values from 425 stations were correlated with the averaged shear wave velocity of the top 30 m of strata (VS30), and the relationship could be described as κ0 = (0.125 ± 0.005) − (0.011 ± 0.001) × ln(VS30), and an acceptable linear correlation (R2 = 0.57) was performed. The results may be used in the future application of ground motion prediction equations (GPMEs) and serve as simulation parameters. Also, the relationship between κ0 and the depth to engineering rock (Z1.0) is not well correlated, whereas an acceptable correlation exists between κ0 and other site proxies (i.e., elevation and resonant frequency).

Keywords

Site effects decay parameters kappa VS30 Z1.0 

Notes

Acknowledgements

The authors would like to thank the Central Weather Bureau and the National Center for Research on Earthquake Engineering for providing the strong motion data. This work was funded by the Ministry of Science and Technology (MOST103-2625-M-008-017-MY3, MOST105-2116-M-008-012).

References

  1. Abrahamson, N., & Silva, W. (2008). Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra,24(1), 67–97.  https://doi.org/10.1193/1.2924360.CrossRefGoogle Scholar
  2. Al Atik, L., Kottke, A., Abrahamson, N., Hollenback, J., et al. (2014). Kappa (κ) scaling of ground-motion prediction equations using an inverse random vibration theory approach. Bulletin of the Seismological Society of America,104(1), 336–346.  https://doi.org/10.1785/0120120200.CrossRefGoogle Scholar
  3. Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America,74(5), 1969–1993.Google Scholar
  4. Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for Eastern North America. Bulletin of the Seismological Society of America,96(6), 2181–2205.  https://doi.org/10.1785/0120050245.CrossRefGoogle Scholar
  5. Baltay, A. S., & Hanks, T. C. (2014). Understanding the magnitude dependence of PGA and PGV in NGA-West2 data. Bulletin of the Seismological Society of America,104(6), 2851–2865.  https://doi.org/10.1785/0120130283.CrossRefGoogle Scholar
  6. Beresnev, I. A., & Atkinson, G. M. (1997). Modeling finite-fault radiation from the ω n spectrum. Bulletin of the Seismological Society of America,87(1), 67–84.Google Scholar
  7. Beresnev, I. A., & Atkinson, G. M. (1998). FINSIM—A FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismological Research Letters,69(1), 27–32.CrossRefGoogle Scholar
  8. Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics,160, 635–676.CrossRefGoogle Scholar
  9. Boore, D. M. (2004). Estimating V S(30) (or NEHRP site classes) from shallow velocity models (Depths < 30 m). Bulletin of the Seismological Society of America,94(2), 591–597.CrossRefGoogle Scholar
  10. Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America,87(2), 327–341.Google Scholar
  11. Bora, S. S., Scherbaum, F., Kuehn, N., Stafford, P., & Edwards, B. (2015). Development of a response spectral ground-motion prediction equation (GMPE) for seismic-hazard analysis from empirical Fourier spectral and duration models. Bulletin of the Seismological Society of America,105(4), 2192–2218.CrossRefGoogle Scholar
  12. Building Seismic Safety Council (BSSC). (2001). NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 368), Washington, D.C., 2000 Edition.Google Scholar
  13. Campbell, K. W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground motion (attenuation) relations in eastern North America. Bulletin of the Seismological Society of America,93(3), 1012–1033.CrossRefGoogle Scholar
  14. Campbell, K. W. (2009). Estimates of shear-wave Q and κ 0 for unconsolidated and semiconsolidated sediments in eastern North America. Bulletin of the Seismological Society of America,99(4), 2365–2392.  https://doi.org/10.1785/0120080116.CrossRefGoogle Scholar
  15. Castellaro, S., Mulargia, F., Rossi, P. L., et al. (2008). V S30: Proxy for seismic amplification? Seismological Research Letters,79(4), 540–543.CrossRefGoogle Scholar
  16. Castro, R. R., & Avila-Barrientos, L. (2015). Estimation of the spectral parameter kappa in the region of the Gulf of California, Mexico. Journal of Seismology,19, 809–829.  https://doi.org/10.1007/s10950-015-9496-x.CrossRefGoogle Scholar
  17. Chandler, A., Lam, N., Tsang, H., et al. (2006). Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dynamics and Earthquake Engineering,26(11), 1004–1014.  https://doi.org/10.1007/s10950-005-9006-7.CrossRefGoogle Scholar
  18. Chen, K. P., Wang, C. Y., Tsai, Y. B., Chang, W. Y., et al. (2013). A seismic structure study in the Kaoping area, southwestern Taiwan. Bulletin of the Seismological Society of America,103, 306–316.CrossRefGoogle Scholar
  19. Chiang, S. C. (1971). Seismic study of the Chaochou structure, Pingtung, Taiwan. Petroleum Geology of Taiwan,8, 281–294.Google Scholar
  20. Cormier, V. F. (1982). The effect of attenuation on seismic body waves. Bulletin of the Seismological Society of America,72(1), 169–200.Google Scholar
  21. Cotton, F., Scherbaum, F., Bommer, J. J., Bungum, H., et al. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to Central Europe and rock sites. Journal of Seismology,10, 137–156.CrossRefGoogle Scholar
  22. Douglas, J., Bungum, H., Scherbaum, F., et al. (2006). Ground-motion prediction equations for southern Spain and southern Norway obtained using the composite model perspective. Journal of Earthquake Engineering,10, 33–72.CrossRefGoogle Scholar
  23. Douglas, J., Gehl, P., Bonilla, L. F., Gélis, C., et al. (2010). A κ model for mainland France. Pure and Applied Geophysics,167, 1303–1315.  https://doi.org/10.1007/s00024-010-0146-5.CrossRefGoogle Scholar
  24. Edwards, B., Fäh, D., Giardini, D., et al. (2011). Attenuation of seismic shear wave energy in Switzerland. Geophysical Journal International,185, 967–984.  https://doi.org/10.1111/j.1365-246X.2011.04987.x.CrossRefGoogle Scholar
  25. Edwards, B., Ktenidou, O. J., Cotton, F., Abrahamson, N., Van Houtte, C., Fäh, D., et al. (2015). Epistemic uncertainty and limitations of the κ 0 model for near-surface attenuation at hard rock sites. Geophysical Journal International,202, 1627–1645.CrossRefGoogle Scholar
  26. Fu, L., & Li, X. J. (2016). The characteristics of high-frequency attenuation of shear waves in the Longmen Shan and Adjacent Regions. Bulletin of the Seismological Society of America.,106(5), 1979–1990.  https://doi.org/10.1785/0120160002.CrossRefGoogle Scholar
  27. Gentili, S., & Franceschina, G. (2011). High frequency attenuation of shear waves in the southeastern Alps and northern Dinarides. Geophysical Journal International,185(3), 1393–1416.CrossRefGoogle Scholar
  28. Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America,100(5A), 2095–2123.  https://doi.org/10.1785/0120100057.CrossRefGoogle Scholar
  29. Hanks, T. C. (1979). b-values and ω γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research,84, 2235–2242.CrossRefGoogle Scholar
  30. Hanks, T. C. (1982). f max. Bulletin of the Seismological Society of America,72(6A), 1867–1880.Google Scholar
  31. Hassani, B., & Atkinson, G. (2018). Adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Accounting for Kappa effects. Bulletin of the Seismological Society of America.,108(2), 913–928.  https://doi.org/10.1785/0120170333.CrossRefGoogle Scholar
  32. Holzer, T. L., Padovani, A. C., Bennett, M. J., Noce, T. E., Tinsley, J. C., et al. (2005). Mapping NEHRP V S30 site classes. Earthquake Spectra,21, 353–370.CrossRefGoogle Scholar
  33. Hough, S. E., Anderson, J. G., Brune, J., Vernon, F., III, Berger, J., Fletcher, J., et al. (1988). Attenuation near Anza, California. Bulletin of the Seismological Society of America.,78(2), 672–691.Google Scholar
  34. Huang, J. Y. (2009). Using microtremor measurement to study the site effect in Taiwan area. Master thesis, National Central University (in Chinese with English abstract), p. 240.Google Scholar
  35. Huang, M. W., Wang, J. H., Hsieh, H. H., Wen, K. L., Ma, K. F., et al. (2005). Frequency-dependent sites amplifications evaluated from well-logging data in central Taiwan. Geophysical Research Letters,32, L21302.  https://doi.org/10.1029/2005GL023527.CrossRefGoogle Scholar
  36. Huang, M. W., Wang, J. H., Ma, K. F., Wang, C. Y., Hung, J. H., Wen, K. L., et al. (2007). Frequency-dependent site amplifications with f ≥ 0.01 Hz evaluated from the velocity and density models in Central Taiwan. Bulletin of the Seismological Society of America,97(2), 624–637.  https://doi.org/10.1785/0120060139.CrossRefGoogle Scholar
  37. Huang, M. W., Wen, K. L., Chang, S. C., Chang, C. L., Liu, S. Y., Chen, K. P., et al. (2017). The high–cut parameter (kappa) for the near–surface geology in and around the Taipei basin, Taiwan. Bulletin of the Seismological Society of America.,107(3), 1254–1264.CrossRefGoogle Scholar
  38. Kilb, D., Biasi, G., Anderson, J. G., Brune, J., Peng, Z., Vernon, F. L., et al. (2012). A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data. Bulletin of the Seismological Society of America,102, 284–300.CrossRefGoogle Scholar
  39. Ktenidou, O. J., Abrahamson, N., Drouet, S., Cotton, F., et al. (2015). Understanding the physics of kappa (κ): Insights from a downhole array. Geophysical Journal International,203, 678–691.  https://doi.org/10.1093/gji/ggv315.CrossRefGoogle Scholar
  40. Ktenidou, O. J., Abrahamson, N., Silva, W., Darragh, R., et al. (2016). A methodology for the estimation of kappa (κ) for large datasets. Example application to rock sites in the NGA-East database. Pacific Earthquake Engineering Research Center, PEER report 2016/01, p. 117.Google Scholar
  41. Ktenidou, O. J., Cotton, F., Abrahamson, N., Anderson, J. G., et al. (2014). Taxonomy of kappa: A review of definitions and estimation approaches targeted to applications. Seismological Research Letters,85, 135–146.CrossRefGoogle Scholar
  42. Ktenidou, O. J., Silva, W., Darragh, R., Abrahamson, N., Kishida, T., et al. (2017). Squeezing kappa (κ) out of the transportable array: A strategy for using bandlimited data in regions of sparse seismicity. Bulletin of the Seismological Society of America.,107(1), 256–275.CrossRefGoogle Scholar
  43. Kuo, C. H., Chen, C. T., Lin, C. M., Wen, K. L., Huang, J. Y., Chang, S. C., et al. (2016). S-Wave velocity structure and site effect parameters derived by microtremor arrays in the western plain of Taiwan. Journal of Asian Earth Sciences,128, 27–41.  https://doi.org/10.1016/j.jseaes.2016.07.012.CrossRefGoogle Scholar
  44. Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M., Lin, C. M., Chen, C. T., et al. (2011). Evaluating empirical regression equations for V s and estimating V S30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering,31, 431–439.  https://doi.org/10.1016/j.soildyn.2010.09.012.CrossRefGoogle Scholar
  45. Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., Kuo, K. W., et al. (2012). Site classification and V S30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology,129–130, 68–75.  https://doi.org/10.1016/j.enggeo.2012.01.013.CrossRefGoogle Scholar
  46. Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., Sun, P. L., et al. (2018). Taiwan-specific model for VS30 prediction considering between-proxy correlations. Earthquake Spectra, 34(4), 1973–1993.CrossRefGoogle Scholar
  47. Lai, T. S., Mittal, H., Chao, W. A., Wu, Y. M., et al. (2016). A study on kappa value in Taiwan using borehole and surface seismic array. Bulletin of the Seismological Society of America,106, 1509–1517.CrossRefGoogle Scholar
  48. Laurendeau, A., Bard, P. Y., Hollender, F., Ktedinou, O. J., Foundotos, L., Hernandez, B., Perron, V., et al. (2016). Prediction of reference motions (1000\Vs\3000 m/s) from corrected KiK-net records of the local site effects. In: 5th IASPEI/IAEE international symposium: effects of surface geology on seismic motion, August 15–17, Taipei.Google Scholar
  49. Laurendeau, A., Bard, P. Y., Hollender, F., Perron, V., Foundotos, L., Ktenidou, O. J., et al. (2018). Derivation of consistent hard rock (1000 < VS < 3000 m/s) GMPEs from surface and down-hole recordings: analysis of KiK-net data. Bulletin of Earthquake Engineering,16(6), 2253–2284.  https://doi.org/10.1007/s10518-017-0142-6.CrossRefGoogle Scholar
  50. Laurendeau, A., Cotton, F., Ktenidou, O. J., Bonilla, L. F., Hollender, F., et al. (2013). Rock and stiff-soil site amplification: Dependency on V S30 and kappa (κ 0). Bulletin of the Seismological Society of America,103(6), 3131–3148.  https://doi.org/10.1785/0120130020.CrossRefGoogle Scholar
  51. Lay, T., & Wallace, T. C. (1995). Modern global seismology (p. 521). San Diego: Academic Press.Google Scholar
  52. Lee, V. W., & Trifunac, M. D. (2010). Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? Soil Dynamics and Earthquake Engineering,30, 1250–1258.CrossRefGoogle Scholar
  53. Lin, C. M., Chang, T. M., Wen, K. L., Huang, Y. C., Chiang, H. J., Kuo, C. H., et al. (2009). Shallow s-wave velocity structures in the western coastal plain of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,20(2), 299–308.  https://doi.org/10.3319/TAO.2007.12.10.01.CrossRefGoogle Scholar
  54. Liu, Z., Wuenscher, M. E., Herrmann, R. B., et al. (1994). Attenuation of body waves in the central New Madrid seismic zone. Bulletin of the Seismological Society of America,84(4), 1112–1122.Google Scholar
  55. Ma, K. F., Mori, J. M., Lee, S. J., Yu, S. B., et al. (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America,91(5), 1069–1087.CrossRefGoogle Scholar
  56. Mai, P. M., Imperatori, W., Olsen, K. B., et al. (2010). Hybrid broadband ground-motion simulations: combining long-period deterministic synthetics with high-frequency multiple S-to-S backscattering. Bulletin of the Seismological Society of America,100(5), 2124–2142.  https://doi.org/10.1785/012008019.CrossRefGoogle Scholar
  57. Mayor, J., Bora, S. S., Cotton, F., et al. (2018). Capturing regional variations of hard-rock κ 0 from coda analysis. Bulletin of the Seismological Society of America,108(1), 399–408.  https://doi.org/10.1785/0120170153.CrossRefGoogle Scholar
  58. Parolai, S., & Bindi, D. (2004). Influence of soil-layer properties on κ evaluation. Bulletin of the Seismological Society of America,94, 349–356.CrossRefGoogle Scholar
  59. Shin, T. C., Chang, C. H., Pu, H. C., Lin, H. W., Leu, P. L., et al. (2013). The geophysical database management system in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,24(1), 11–18.  https://doi.org/10.3319/TAO.2012.09.20.01(T).CrossRefGoogle Scholar
  60. Silva, W., Darragh, R., Gregor, N., Martin, G., Abrahamson, N., Kircher, C., et al. (1998). Reassessment of site coefficients and near-fault factors for building code provisions. Technical Report Program Element II: 98-HQGR-1010, Pacific Engineering and Analysis, El Cerrito, USA.Google Scholar
  61. Sokolov, V. Y., Loh, C. H., Wen, K. L., et al. (2004). Evaluation of generalized site response functions for typical soil classes (B, C, and D) in Taiwan. Earthquake Spectra,20, 1279–1316.CrossRefGoogle Scholar
  62. Toro, G. R., Abrahamson, N., Schneider, J. F., et al. (1997). Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties. Seismological Research Letters,68, 41–57.CrossRefGoogle Scholar
  63. Tsai, C. C. P., & Chen, K. C. (2000). A model for the high-cut process of strong-motion accelerations in terms of distance, magnitude, and site condition: An example from the SMART 1 Array, Lotung, Taiwan. Bulletin of the Seismological Society of America,90(6), 1535–1542.CrossRefGoogle Scholar
  64. Tsai, Y. B., Yu, T. M., Chao, H. L., Lee, C. P., et al. (2001). Spatial distribution and age dependence of human-fatality rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999. Bulletin of the Seismological Society of America,91(5), 1298–1309.CrossRefGoogle Scholar
  65. Van Houtte, C., Drouet, S., Cotton, F., et al. (2011). Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bulletin of the Seismological Society of America,101(6), 2926–2941.  https://doi.org/10.1785/0120100345.CrossRefGoogle Scholar
  66. Van Houtte, C., Ktenidou, O. J., Larkin, T., Holden, C., et al. (2014). Hard-site κ 0 (kappa) calculations for Christchurch, New Zealand, and comparison with local ground motion prediction models. Bulletin of the Seismological Society of America,104(4), 1899–1913.  https://doi.org/10.1785/0120130271.CrossRefGoogle Scholar
  67. Wang, Y. J., Ma, K. F., Mouthereau, F., Eberhart-Phillips, D., et al. (2010). Three dimensional Q P- and Q S- tomography beneath Taiwan Orogenic Belt: Implication for tectonic and thermal structure. Journal of Geophysical Research,180, 891–910.  https://doi.org/10.1111/j.1365-246X.2009.04459.x.CrossRefGoogle Scholar
  68. Wen, K. L., Chang, Y. W., Lin, C. M., Chiang, H. J., Huang, M. W., et al. (2008). Damage and ground motion of the 26 December 2006 Pingtung earthquakes, Taiwan. Terrestrial, Atmospheric & Oceanic Sciences,19(6), 641–651.  https://doi.org/10.3319/TAO.2008.19.6.000(PT).CrossRefGoogle Scholar
  69. Zandieh, A., Campbell, K. W., Pezeshk, S., et al. (2016). Estimation of κ 0 implied by the high-frequency shape of the NGA-West2 ground motion prediction equations. Bulletin of the Seismological Society of America.,106(3), 1342–1356.  https://doi.org/10.1785/0120150356.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sinotech Engineering Consultant, LTDTaipeiTaiwan, ROC
  2. 2.Department of Earth SciencesNational Central UniversityChungliTaiwan, ROC
  3. 3.National Science and Technology Center for Disaster ReductionNew Taipei CityTaiwan, ROC
  4. 4.National Center for Research on Earthquake EngineeringTaipeiTaiwan, ROC
  5. 5.Institute of Earth SciencesAcademia SinicaTaipeiTaiwan, ROC

Personalised recommendations